This paper describes a measurement of fiducial and differential cross sections of gluon-fusion Higgs boson production in the $H{\rightarrow\,}WW^{\ast}{\rightarrow\,}e\nu\mu\nu$ channel, using 20.3 fb$^{-1}$ of proton-proton collision data. The data were produced at a centre-of-mass energy of $\sqrt{s} = 8$ TeV at the CERN Large Hadron Collider and recorded by the ATLAS detector in 2012. Cross sections are measured from the observed $H{\rightarrow\,}WW^{\ast}{\rightarrow\,}e\nu\mu\nu$ signal yield in categories distinguished by the number of associated jets. The total cross section is measured in a fiducial region defined by the kinematic properties of the charged leptons and neutrinos. Differential cross sections are reported as a function of the number of jets, the Higgs boson transverse momentum, the dilepton rapidity, and the transverse momentum of the leading jet. The jet-veto efficiency, or fraction of events with no jets above a given transverse momentum threshold, is also reported. All measurements are compared to QCD predictions from Monte Carlo generators and fixed-order calculations, and are in agreement with the Standard Model predictions.
The cross section for Higgs boson production in pp collisions is studied using the H to WW decay mode, followed by leptonic decays of the W bosons to an oppositely charged electron-muon pair in the final state. The measurements are performed using data collected by the CMS experiment at the LHC at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.4 inverse femtobarns. The Higgs boson transverse momentum (pT) is reconstructed using the lepton pair pT and missing pT. The differential cross section times branching fraction is measured as a function of the Higgs boson pT in a fiducial phase space defined to match the experimental acceptance in terms of the lepton kinematics and event topology. The production cross section times branching fraction in the fiducial phase space is measured to be 39 +/- 8 (stat) +/- 9 (syst) fb. The measurements are found to agree, within experimental uncertainties, with theoretical calculations based on the standard model.
The $\bar{\Lambda} / \Lambda$ and $\bar{\Lambda} / K^0_\mathrm{S}$ production ratios are measured by the LHCb detector from $0.3\,\mathrm{nb}^{-1}$ of $pp$ collisions delivered by the LHC at $\sqrt{s} = 0.9$\,TeV and $1.8\,\mathrm{nb}^{-1}$ at $\sqrt{s} = 7$\,TeV. Both ratios are presented as a function of transverse momentum, $p_\mathrm{T}$, and rapidity, $y$, in the ranges {$0.15 < p_\mathrm{T} < 2.50\,\mathrm{GeV}/c$} and {$2.0<y<4.5$}. Results at the two energies are in good agreement as a function of rapidity loss, $\Delta y = y_\mathrm{beam} - y$, and are consistent with previous measurements. The ratio $\bar{\Lambda} / \Lambda$, measuring the transport of baryon number from the collision into the detector, is smaller in data than predicted in simulation, particularly at high rapidity. The ratio $\bar{\Lambda} / K^0_\mathrm{S}$, measuring the baryon-to-meson suppression in strange quark hadronisation, is significantly larger than expected.
A measurement of the inelastic proton-proton cross section with the CMS detector at a center-of-mass energy of $\sqrt{s} =$ 13 TeV is presented. The analysis is based on events with energy deposits in the forward calorimeters, which cover pseudorapidities of -6.6 $< \eta $ 4.1 GeV and/or $M_\mathrm{Y} >$ 13 GeV, where $M_\mathrm{X}$ and $M_\mathrm{Y}$ are the masses of the diffractive dissociation systems at negative and positive pseudorapidities, respectively. The results are compared with those from other experiments as well as to predictions from high-energy hadron-hadron interaction models.
This paper presents measurements of $W^\pm Z$ production in $pp$ collisions at a center-of-mass energy of 8 TeV. The gauge bosons are reconstructed using their leptonic decay modes into electrons and muons. The data were collected in 2012 by the ATLAS experiment at the Large Hadron Collider, and correspond to an integrated luminosity of 20.3 fb$^{-1}$. The measured inclusive cross section in the detector fiducial region is $\sigma_{W^\pm Z \rightarrow \ell^{'} \nu\ \ell \ell} = 35.1 \pm$ 0.9 (stat.) $\pm 0.8$ (sys.) $\pm 0.8$ (lumi.) fb, for one leptonic decay channel. In comparison, the next-to-leading-order Standard Model expectation is 30.0 $\pm$ 2.1 fb. Cross sections for $W^+Z$ and $W^-Z$ production and their ratio are presented as well as differential cross sections for several kinematic observables. Limits on anomalous triple gauge boson couplings are derived from the transverse mass spectrum of the $W^\pm Z$ system. From the analysis of events with a $W$ and a $Z$ boson associated with two or more forward jets an upper limit at 95% confidence level on the $W^\pm Z$ scattering cross section of 0.63 fb, for each leptonic decay channel, is established, while the Standard Model prediction at next-to-leading order is 0.13 fb. Limits on anomalous quartic gauge boson couplings are also extracted.
Measurements of the electroweak production of a $W$ boson in association with two jets at high dijet invariant mass are performed using $\sqrt{s} = 7$ and $8$ TeV proton-proton collision data produced by the Large Hadron Collider, corresponding respectively to 4.7 and 20.2 fb$^{-1}$ of integrated luminosity collected by the ATLAS detector. The measurements are sensitive to the production of a $W$ boson via a triple-gauge-boson vertex and include both the fiducial and differential cross sections of the electroweak process.
A measurement of the production of three isolated photons in proton-proton collisions at a centre-of-mass energy $\sqrt{s}$ = 8 TeV is reported. The results are based on an integrated luminosity of 20.2 fb$^{-1}$ collected with the ATLAS detector at the LHC. The differential cross sections are measured as functions of the transverse energy of each photon, the difference in azimuthal angle and in pseudorapidity between pairs of photons, the invariant mass of pairs of photons, and the invariant mass of the triphoton system. A measurement of the inclusive fiducial cross section is also reported. Next-to-leading-order perturbative QCD predictions are compared to the cross-section measurements. The predictions underestimate the measurement of the inclusive fiducial cross section and the differential measurements at low photon transverse energies and invariant masses. They provide adequate descriptions of the measurements at high values of the photon transverse energies, invariant mass of pairs of photons, and invariant mass of the triphoton system.
We have measured pi+pi- and K+K- production in two-photon collisions using 87.7 /fb of data collected with the Belle detector at the asymmetric energy e+e- collider KEKB. The cross sections are measured to high precision in the two-photon center-of-mass energy (W) range between 2.4 GeV < W < 4.1 GeV and angular region |cos theta^{*}| < 0.6. The cross section ratio sigma(gammagamma->K+K-)/sigma(gammagamma->pi+pi-) is measured to be 0.89 +- 0.04(stat) +- 0.15(syst) in the range of 3.0 GeV < W < 4.1 GeV, where the ratio is energy independent. We observe a sin^{-4} theta^{*} behavior of the cross section in the same W range. Production of chi_{c0} and chi_{c2} mesons is observed in both gammagamma -> pi+pi- and gammagamma -> K+K- modes.
We present the first wide-range measurement of the charged-particle pseudorapidity density distribution, for different centralities (the 0-5%, 5-10%, 10-20%, and 20-30% most central events) in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV at the LHC. The measurement is performed using the full coverage of the ALICE detectors, $-5.0 < \eta < 5.5$, and employing a special analysis technique based on collisions arising from LHC "satellite" bunches. We present the pseudorapidity density as a function of the number of participating nucleons as well as an extrapolation to the total number of produced charged particles ($N_{\rm ch} = 17165 \pm 772$ for the 0-5% most central collisions). From the measured ${\rm d}N_{\rm ch}/{\rm d}\eta$ distribution we derive the rapidity density distribution, ${\rm d}N_{\rm ch}/{\rm d}y$, under simple assumptions. The rapidity density distribution is found to be significantly wider than the predictions of the Landau model. We assess the validity of longitudinal scaling by comparing to lower energy results from RHIC. Finally the mechanisms of the underlying particle production are discussed based on a comparison with various theoretical models.
A combination is presented of all inclusive deep inelastic cross sections previously published by the H1 and ZEUS collaborations at HERA for neutral and charged current $e^{\pm}p$ scattering for zero beam polarisation. The data were taken at proton beam energies of 920, 820, 575 and 460 GeV and an electron beam energy of 27.5 GeV. The data correspond to an integrated luminosity of about 1 fb$^{-1}$ and span six orders of magnitude in negative four-momentum-transfer squared, $Q^2$, and Bjorken $x$. The correlations of the systematic uncertainties were evaluated and taken into account for the combination. The combined cross sections were input to QCD analyses at leading order, next-to-leading order and at next-to-next-to-leading order, providing a new set of parton distribution functions, called HERAPDF2.0. In addition to the experimental uncertainties, model and parameterisation uncertainties were assessed for these parton distribution functions. Variants of HERAPDF2.0 with an alternative gluon parameterisation, HERAPDF2.0AG, and using fixed-flavour-number schemes, HERAPDF2.0FF, are presented. The analysis was extended by including HERA data on charm and jet production, resulting in the variant HERAPDF2.0Jets. The inclusion of jet-production cross sections made a simultaneous determination of these parton distributions and the strong coupling constant possible, resulting in $\alpha_s(M_Z)=0.1183 \pm 0.0009 {\rm(exp)} \pm 0.0005{\rm (model/parameterisation)} \pm 0.0012{\rm (hadronisation)} ^{+0.0037}_{-0.0030}{\rm (scale)}$. An extraction of $xF_3^{\gamma Z}$ and results on electroweak unification and scaling violations are also presented.