The Hadronic Cross-section of Electron - Positron Annihilation at 9.5-{GeV} and the $\Upsilon$ and $\Upsilon^\prime$ Resonance Parameters

Albrecht, H. ; Childers, R. ; Darden, C.W. ; et al.
Phys.Lett.B 116 (1982) 383-386, 1982.
Inspire Record 178613 DOI 10.17182/hepdata.30881

The reaction e + e − → hadrons has been measured in the ϒ and ϒ′ region using the DASP detector at the DESY storage ring DORIS. The following final results are obtained: R had (9.5 GeV)=3.73±0.16±0.28, Γ ee ( ϒ )=(1.23 ± 0.08 ± 0.12) keV, B μμ ( ϒ )=(3.2±1.3±0.3)%, Γ ee Γ had Γ tot (ϒ′)=(0.55±0.11 ±0.06) keV , and M ( ϒ ′)− M ( ϒ )=(556 ±10) MeV.

0 data tables match query

Measurement of R and determination of the charged particle multiplicity in e+ e- annihilation at s**(1/2) around 10-GeV

The ARGUS collaboration Albrecht, H. ; Ehrlichmann, H. ; Hamacher, T. ; et al.
Z.Phys.C 54 (1992) 13-20, 1992.
Inspire Record 319102 DOI 10.17182/hepdata.14708

We have measured theR value in non-resonante+e− annihilation using the ARGUS detector at the storage ring DORIS II. At a centre-of-mass energy\(\sqrt s= 9.36\) GeV the ratio of the hadronic cross-section to the μ-pair cross section in lowest order QED has been determined to beR=3.46±0.03±0.13. In addition, we have measured the charged-particle multiplicities in non-resonant hadron production at\(\sqrt s= 10.47\) GeV just below theB\(\bar B\) threshold and in ϒ (4S) resonance decays. For the average charged-particle multiplicities in continuum events and ϒ(4S)→B\(\bar B\) decays we obtain <n>cont=8.35±0.02±0.20 and <n>ϒ(4s)=10.81±0.05±0.23.

0 data tables match query

A study of the energy evolution of event shape distributions and their means with the DELPHI detector at LEP.

The DELPHI collaboration Abdallah, J. ; Abreu, P. ; Adam, W. ; et al.
Eur.Phys.J.C 29 (2003) 285-312, 2003.
Inspire Record 620250 DOI 10.17182/hepdata.13029

Infrared and collinear safe event shape distributions and their mean values are determined in e+e- collisions at centre-of-mass energies between 45 and 202 GeV. A phenomenological analysis based on power correction models including hadron mass effects for both differential distributions and mean values is presented. Using power corrections, alpha_s is extracted from the mean values and shapes. In an alternative approach, renormalisation group invariance (RGI) is used as an explicit constraint, leading to a consistent description of mean values without the need for sizeable power corrections. The QCD beta-function is precisely measured using this approach. From the DELPHI data on Thrust, including data from low energy experiments, one finds beta_0 = 7.86 +/- 0.32 for the one loop coefficient of the beta-function or, assuming QCD, n_f = 4.75 +/- 0.44 for the number of active flavours. These values agree well with the QCD expectation of beta_0=7.67 and n_f=5. A direct measurement of the full logarithmic energy slope excludes light gluinos with a mass below 5 GeV.

0 data tables match query

Inclusive Sigma- and Lambda(1520) production in hadronic Z decays.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 475 (2000) 429-447, 2000.
Inspire Record 524694 DOI 10.17182/hepdata.49984

Production of Sigma- and Lambda(1520) in hadronic Z decays has been measured using the DELPHI detector at LEP. The Sigma- is directly reconstructed as a charged track in the DELPHI microvertex detector and is identified by its Sigma -> n pi decay leading to a kink between the Sigma- and pi-track. The reconstruction of the Lambda(1520) resonance relies strongly on the particle identification capabilities of the barrel Ring Imaging Cherenkov detector and on the ionisation loss measurement of the TPC. Inclusive production spectra are measured for both particles. The production rates are measured to be <N_{Sigma-}/N_{Z}^{had}> = 0.081 +/- 0.002 +/- 0.010, <N_{Lambda(1520)}/N_{Z}^{had}> = 0.029 +/- 0.005 +/- 0.005. The production rate of the Lambda(1520) suggests that a large fraction of the stable baryons descend from orbitally excited baryonic states. It is shown that the baryon production rates in Z decays follow a universal phenomenological law related to isospin, strangeness and mass of the particles.

0 data tables match query

Measurement of the Total Hadronic Cross-sections in e$^{+} $e$^{-}$ Annihilation and Determination of the Standard Model Parameters

The TOPAZ collaboration Adachi, I. ; Doser, M. ; Enomoto, R. ; et al.
Phys.Lett.B 234 (1990) 525-533, 1990.
Inspire Record 283003 DOI 10.17182/hepdata.29733

We have measured the total e + e − hadronic annihilation cross section at the center of mass energies between 50.0 GeV and 61.4 GeV with the TOPAZ detector at TRISTAN. The full electroweak radiative corrections (up to O(α 3 )) were applied to the data which were analysed together with the published data from PEP and PETRA. We then determined the standard model parameters, M z (the mass of the Z), sin w 2 θ (the Weinberg angle) and Λ MS (the QCD scale parameter) by comparing the experimental data with the prediction of the standard model. The best fit values are M z = 89.2 −1.8 +2.1 GeV/c 2 , sin 2 θ w = 0.233 −0.025 +0.035 and Λ MS = 0.327 −0.206 +0.275 GeV. A constraint is obtained on the heavy top quark mass through the radiative corrections if we take the SLC value of M z (91.1 GeV / c 2 ).

0 data tables match query

Measurement of R and Search for New Quark Flavors Decaying Into Multi - Jet Final States in $e^+ e^-$ Collisions Between 54-{GeV} and 61.4-{GeV} c.m. Energies

The VENUS collaboration Abe, K. ; Amako, K. ; Arai, Y. ; et al.
Phys.Lett.B 234 (1990) 382-388, 1990.
Inspire Record 283774 DOI 10.17182/hepdata.29755

We accumulated e + e − annihilations into multi-hadrons at CM energies between 54.0 and 61.4 GeV with the VENUS detector at TRISTAN. Measured R -ratios are consistent with the standard model using the Z-boson mass; 91.1 GeV/ c 2 . Using two new observables, we searched for a planar four-jet and other multi-jet events resulting from the decay of a charge — 1 3 e b ' quark. Having observed no positive signals, we excluded b' masses between 19.4 and 28.2 GeV/ c 2 with a 95% confidence level, regardless of branching into charged current and loop-induced flavor-changing neutral current decay, including a possible Higgs decay process. The charge + 2 3 e top quark was excluded below f30.2 GeV/ c 2 .

0 data tables match query

Search for New Heavy Quarks in $e^+ e^-$ Collisions Up to 46.78-{GeV} Center-of-mass Energy

The CELLO collaboration Behrend, H.J. ; Burger, J. ; Criegee, L. ; et al.
Phys.Lett.B 144 (1984) 297-301, 1984.
Inspire Record 202783 DOI 10.17182/hepdata.30514

The total e + e − annihilation onto hadron has been measured at CM energies between 33.00 and 36.72 GeV and between 38.66 and 46.78 GeV in steps of 20 and 30 MeV respectively. The average of the ratio R = σ ( e + e − → hadrons )/ σ is 〈 R 〉=3.85±0.12 and 〈 R 〉=4.04±0.10 for the two energy ranges. The systematic error on 〈 R 〉 is 0.31. Both values are consistent with the expectation for the known coloured quarks u, d, s, c and b. No evidence was found for the production of new quarks. If the largest fluctuation in R is interpreted as a narrow resonance, it corresponds to a product of the electronic width and the hadronic branching ratio Γ ee B had >2.9 keV at the 95% confidence level, well below the value expected for the toponium vector ground state with charge 2 3 e . The observed number of aplanar final states rules out the continuum production of a a new heavy flavour with pointlike cross section up to a CM energy of 45.4 GeV for a quarck charge of 1 3 e . and up to 46.6 GeV for 2 3 e at the 95% confidence level.

0 data tables match query

Total Cross-section for Hadron Production by $e^+ e^-$ Annihilation at Center-of-mass Energies Between 3.6-{GeV} and 5.2-{GeV}

The DASP collaboration Brandelik, R. ; Braunschweig, W. ; Martyn, H.U. ; et al.
Phys.Lett.B 76 (1978) 361, 1978.
Inspire Record 129715 DOI 10.17182/hepdata.27431

The total cross section for e + e − annihilation into hadronic final states between 3.6 and 5.2 GeV was measured by the nonmagnetic inner detector of DASP, which has similar trigger and detection efficiencies for photons and charged particles. The measured difference in R = σ had / σμμ between 3.6 GeV and 5.2 GeV is ΔR = 2.1 ± 0.3. We observe three peaks at cm energies of 4.04, 4.16 and 4.417 GeV, the parameters of which, when interpreted as resonances, are given.

0 data tables match query

Total Cross-Section for Hadron Production by e+ e- Annihilation at PETRA Energies

The JADE collaboration Bartel, W. ; Canzler, T. ; Cords, D. ; et al.
Phys.Lett.B 88 (1979) 171-176, 1979.
Inspire Record 142874 DOI 10.17182/hepdata.27277

The cross section for the process e + e − → multihadrons has been measured at the highest PETRA energies. We measure R (the total cross section in units of the point-like e + e - → μ + μ - cross section) to be 2.9 ± 0.7, 4.0 ± 0.5, 4.6 ± 0.4 and 4.2 ± 0.6 at s of 22, 27.7, 30 and 31.6 GeV, respectively. The observed average multiplicity, together with existing low energy data, indicate a rapid increase in multiplicity with increasing energy.

0 data tables match query

Study of Electron - Positron Collisions at the Highest {PETRA} Energy

The Aachen-DESY-Annecy(LAPP)-MIT-NIKHEF-Beijing collaboration Barber, D.P. ; Becker, U. ; Benda, H. ; et al.
Phys.Lett.B 85 (1979) 463-466, 1979.
Inspire Record 141976 DOI 10.17182/hepdata.27332

We report on the results of the study of e + e − collisions at the highest PETRA energy of √ s = 31.57 GeV, using the 4π sr, electromagnetic and calorimetric detector Mark J. Based on 88 hadron events, and an integrated luminosity of 243 nb −1 we obtain R = σ (e + e − → hadrons)/ σ (e + e − → μ + μ − ) = 4.0 ± 0.5 (statistical) ± 6 (systematic). The R value, the measured thrust distribution and average spherocity show no evidence for the production of new quark flavors.

0 data tables match query