Precision Measurement of the Total Cross-section for $e^+ e^- \to$ Hadrons at a Center-of-mass Energy of 29-{GeV}

Fernandez, E. ; Ford, William T. ; Qi, N. ; et al.
Phys.Rev.D 31 (1985) 1537, 1985.
Inspire Record 206052 DOI 10.17182/hepdata.4048

We report a high-precision measurement of the ratio R of the total cross section for e+e−→hadrons to that for e+e−→μ+μ−, at a center-of-mass energy of 29.0 GeV using the MAC detector. The result is R=3.96±0.09. This value of R is used to determine a value of the strong coupling constant αs of 0.23±0.06, nearly independent of fragmentation models. Two different analysis methods having quite different event-selection criteria have been used and the results are in agreement. Particular attention has been given to the study of systematic errors. New higher-order QED calculations are used for the luminosity determination and the acceptance for hadrons.

0 data tables match query

A Comparison of jet production rates on the Z0 resonance to perturbative QCD

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Phys.Lett.B 247 (1990) 167-176, 1990.
Inspire Record 297698 DOI 10.17182/hepdata.29653

The production rates for 2-, 3-, 4- and 5-jet hadronic final states have been measured with the DELPHI detector at the e + e − storage ring LEP at centre of mass energies around 91.5 GeV. Fully corrected data are compared to O(α 2 s ) QCD matrix element calculations and the QCD scale parameter Λ MS is determined for different parametrizations of the renormalization scale ω 2 . Including all uncertainties our result is α s ( M 2 Z )=0.114±0.003[stat.]±0.004[syst.]±0.012[theor.].

0 data tables match query

Consistent measurements of alpha(s) from precise oriented event shape distributions.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 14 (2000) 557-584, 2000.
Inspire Record 522656 DOI 10.17182/hepdata.13245

An updated analysis using about 1.5 million events recorded at $\sqrt{s} = M_Z$ with the DELPHI detector in 1994 is presented. Eighteen infrared and collinear safe event shape observables are measured as a function of the polar angle of the thrust axis. The data are compared to theoretical calculations in ${\cal O} (\alpha_s^2)$ including the event orientation. A combined fit of $\alpha_s$ and of the renormalization scale $x_{\mu}$ in $\cal O(\alpha_s^2$) yields an excellent description of the high statistics data. The weighted average from 18 observables including quark mass effects and correlations is $\alpha_s(M_Z^2) = 0.1174 \pm 0.0026$. The final result, derived from the jet cone energy fraction, the observable with the smallest theoretical and experimental uncertainty, is $\alpha_s(M_Z^2) = 0.1180 \pm 0.0006 (exp.) \pm 0.0013 (hadr.) \pm 0.0008 (scale) \pm 0.0007 (mass)$. Further studies include an $\alpha_s$ determination using theoretical predictions in the next-to-leading log approximation (NLLA), matched NLLA and $\cal O(\alpha_s^2$) predictions as well as theoretically motivated optimized scale setting methods. The influence of higher order contributions was also investigated by using the method of Pad\'{e} approximants. Average $\alpha_s$ values derived from the different approaches are in good agreement.

0 data tables match query

A measurement of alpha(s) from the scaling violation in e+ e- annihilation.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 398 (1997) 194-206, 1997.
Inspire Record 428178 DOI 10.17182/hepdata.47581

The hadronic fragmentation functions of the various quark flavours and of gluons are measured in a study of the inclusive hadron production from Z 0 decays with the DELPHI detector and are compared with the fragmentation functions measured elsewhere at energies between 14 GeV and 91 GeV. A large scaling violation is observed, which is used to extract the strong coupling constant from a fit using a numerical integration of the second order DGLAP evolution equations. The result is α s ( M Z ) = 0.124 −0.007 +0.006 (exp) ± 0.009(theory) where the first error represents the experimental uncertainty and the second error is due to the factorization and renormalization scale dependence.

0 data tables match query

Energy dependence of event shapes and of alpha(s) at LEP-2.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 456 (1999) 322-340, 1999.
Inspire Record 499183 DOI 10.17182/hepdata.49129

Infrared and collinear safe event shape distributions and their mean values are determined using the data taken at five different centre of mass energies above M Z with the DELPHI detector at LEP. From the event shapes, the strong coupling α s is extracted in O ( α s 2 ), NLLA and a combined scheme using hadronisation corrections evaluated with fragmentation model generators as well as using an analytical power ansatz. Comparing these measurements to those obtained at M Z , the energy dependence (running) of α s is accessible. The logarithmic energy slope of the inverse strong coupling is measured to be d α −1 s d log (E cm ) =1.39±0.34( stat )±0.17( syst ) , in good agreement with the QCD expectation of 1.27.

0 data tables match query

Measurement of alpha-s (M(Z)**2) from hadronic event observables at the Z0 resonance

The SLD collaboration Abe, K. ; Abt, I. ; Ahn, C.J. ; et al.
Phys.Rev.D 51 (1995) 962-984, 1995.
Inspire Record 378545 DOI 10.17182/hepdata.22450

The strong coupling alpha_s(M_Z^2) has been measured using hadronic decays of Z^0 bosons collected by the SLD experiment at SLAC. The data were compared with QCD predictions both at fixed order, O(alpha_s^2), and including resummed analytic formulae based on the next-to-leading logarithm approximation. In this comprehensive analysis we studied event shapes, jet rates, particle correlations, and angular energy flow, and checked the consistency between alpha_s(M_Z^2) values extracted from these different measures. Combining all results we obtain alpha_s(M_Z^2) = 0.1200 \pm 0.0025(exp.) \pm 0.0078(theor.), where the dominant uncertainty is from uncalculated higher order contributions.

0 data tables match query

A Measurement of Sigma(tot) (e+ e- ---> Hadrons) for CM Energies Between 12.0-GeV and 36.7-GeV

The TASSO collaboration Brandelik, R. ; Braunschweig, W. ; Gather, K. ; et al.
Phys.Lett.B 113 (1982) 499-508, 1982.
Inspire Record 176887 DOI 10.17182/hepdata.6666

The ration R = σ (e + e − → hadrons) σ μμ was measured between 12.0 and 36.7 GeV c.m. energy W with a precision of typically ± 5.2%. R is found to be constant with an average R = 4.01 ± 0.03 (stat) ± (syst.) for W ⩾ 14 GeV. Quarks are found to be point-like, the mass parameter describing a possible quark form-factor being larger than 186 GeV. Fits including QCD corrections and a weak neutral-current contribution are presented.

0 data tables match query

Comparison of e+ e- Annihilation with QCD and Determination of the Strong Coupling Constant

The TASSO collaboration Brandelik, R. ; Braunschweig, W. ; Gather, K. ; et al.
Phys.Lett.B 94 (1980) 437-443, 1980.
Inspire Record 153511 DOI 10.17182/hepdata.5489

We have analyzed 1113 events of the reaction e + e − → hadrons at CM energies of 12 and 30 GeV in order to make a detailed comparison with QCD. Perturbative effects can be well separated from effects depending on the quark and gluon fragmentation parameters to yield a reliable measurement of the coupling constant α S . At 30 GeV, the result is α S = 0.17 ± 0.02 (statistical) ± 0.03 (systematic). QCD model predictions, using the fragmentation parameters determined along with α S , agree with both gross properties of the final states and with detailed features of the three-jet states.

0 data tables match query

Measurements of alpha-s in e+ e- annihilation at TRISTAN

The TOPAZ collaboration Ohnishi, Y. ; Adachi, I. ; Fujimoto, J. ; et al.
Phys.Lett.B 313 (1993) 475-482, 1993.
Inspire Record 361661 DOI 10.17182/hepdata.43784

The strong coupling constant α s was determined from analyses of the thrust, heavy jet mass and, differential 2-jet rate, using e + e - hadronic events at s = 58 GeV with the TOPAZ detector at TRISTAN. The NLLjet Monte Carlo simulation (NLLjet) and analytic formulae based on resummation up to the next-to-leading logarithms combined with O ( α 2 s ) calculations were used to evaluate α s . The average α s values at Q 2 = (58 GeV) 2 from the analyses are α s = 0.125 ± 0.009 for NLLjet and α s = 0.132 ± 0.008 for the resummed analytic formulae.

0 data tables match query

Determination of $\alpha^- s$ From a Measurement of the Direct Photon Spectrum in $\Upsilon$ (1s) Decays

The ARGUS collaboration Albrecht, H. ; Andam, A.A. ; Binder, U. ; et al.
Phys.Lett.B 199 (1987) 291-296, 1987.
Inspire Record 248655 DOI 10.17182/hepdata.30061

Using the ARGUS detector at the DORIS II e + e − storage ring we have measured direct photons from the decay ???(1 S )→ γgg . The ratio R γ = Γ (???(1S)→ γgg )/ Γ (???(1S)→ ggg )=(3.00±0.13±0.18)% has been determined, from which we deduce values of the strong coupling constant α s =0.225±0.011±0.019 and the QCD scale parameter Λ MS =115±17±28 MeV defined in the modified minimal-subtraction scheme. The shape of the measured spectrum clearly rules out the predictions of the lowest order QCD calculations.

0 data tables match query