Date

Version 2
Measurement of the prompt $D^0$ nuclear modification factor in $p$Pb collisions at $\sqrt{s_\mathrm{NN}} = 8.16$ TeV

The LHCb collaboration Aaij, R. ; Charpentier, Philippe ; Abdelmotteleb, A.S.W. ; et al.
Phys.Rev.Lett. 131 (2023) 102301, 2023.
Inspire Record 2694685 DOI 10.17182/hepdata.153894

The production of prompt $D^0$ mesons in proton-lead collisions in the forward and backward configurations at a center-of-mass energy per nucleon pair of $\sqrt{s_\mathrm{NN}} = 8.16~\mathrm{TeV}$ is measured by the LHCb experiment. The nuclear modification factor of prompt $D^0$ mesons is determined as a function of the transverse momentum $p_\mathrm{T}$, and rapidity in the nucleon-nucleon center-of-mass frame $y^*$. In the forward rapidity region, significantly suppressed production with respect to $pp$ collisions is measured, which provides significant constraints of nuclear parton distributions and hadron production down to the very low Bjorken-$x$ region of $\sim 10^{-5}$. In the backward rapidity region, a suppression with a significance of 2.0 - 3.8 standard deviations compared to nPDF expectations is found in the kinematic region of $p_\mathrm{T}>6~\mathrm{GeV}/c$ and $-3.25<y^*<-2.5$, corresponding to $x\sim 0.01$.

0 data tables match query

Version 2
Differential cross-sections for events with missing transverse momentum and jets measured with the ATLAS detector in 13 TeV proton-proton collisions

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
JHEP 08 (2024) 223, 2024.
Inspire Record 2765017 DOI 10.17182/hepdata.149990

Measurements of inclusive, differential cross-sections for the production of events with missing transverse momentum in association with jets in proton-proton collisions at $\sqrt{s}=13~$TeV are presented. The measurements are made with the ATLAS detector using an integrated luminosity of $140~$fb$^{-1}$ and include measurements of dijet distributions in a region in which vector-boson fusion processes are enhanced. They are unfolded to correct for detector resolution and efficiency within the fiducial acceptance, and are designed to allow robust comparisons with a wide range of theoretical predictions. A measurement of differential cross sections for the $Z~\to \nu\nu$ process is made. The measurements are generally well-described by Standard Model predictions except for the dijet invariant mass distribution. Auxiliary measurements of the hadronic system recoiling against isolated leptons, and photons, are also made in the same phase space. Ratios between the measured distributions are then derived, to take advantage of cancellations in modelling effects and some of the major systematic uncertainties. These measurements are sensitive to new phenomena, and provide a mechanism to easily set constraints on phenomenological models. To illustrate the robustness of the approach, these ratios are compared with two common Dark Matter models, where the constraints derived from the measurement are comparable to those set by dedicated detector-level searches.

0 data tables match query

Measurement of $t\bar{t}$ production in association with additional $b$-jets in the $e\mu$ final state in proton-proton collisions at $\sqrt{s}$=13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
JHEP 01 (2025) 068, 2025.
Inspire Record 2809112 DOI 10.17182/hepdata.153521

This paper presents measurements of top-antitop quark pair ($t\bar{t}$) production in association with additional $b$-jets. The analysis utilises 140 fb$^{-1}$ of proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 13 TeV. Fiducial cross-sections are extracted in a final state featuring one electron and one muon, with at least three or four $b$-jets. Results are presented at the particle level for both integrated cross-sections and normalised differential cross-sections, as functions of global event properties, jet kinematics, and $b$-jet pair properties. Observable quantities characterising $b$-jets originating from the top quark decay and additional $b$-jets are also measured at the particle level, after correcting for detector effects. The measured integrated fiducial cross-sections are consistent with $t\bar{t}b\bar{b}$ predictions from various next-to-leading-order matrix element calculations matched to a parton shower within the uncertainties of the predictions. State-of-the-art theoretical predictions are compared with the differential measurements; none of them simultaneously describes all observables. Differences between any two predictions are smaller than the measurement uncertainties for most observables.

0 data tables match query

Measurements of the production cross-section for a $Z$ boson in association with $b$- or $c$-jets in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Eur.Phys.J.C 84 (2024) 984, 2024.
Inspire Record 2771257 DOI 10.17182/hepdata.151815

This paper presents a measurement of the production cross-section of a $Z$ boson in association with $b$- or $c$-jets, in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS experiment at the Large Hadron Collider using data corresponding to an integrated luminosity of 140 fb$^{-1}$. Inclusive and differential cross-sections are measured for events containing a $Z$ boson decaying into electrons or muons and produced in association with at least one $b$-jet, at least one $c$-jet, or at least two $b$-jets with transverse momentum $p_\textrm{T} > 20$ GeV and rapidity $|y| < 2.5$. Predictions from several Monte Carlo generators based on next-to-leading-order matrix elements interfaced with a parton-shower simulation, with different choices of flavour schemes for initial-state partons, are compared with the measured cross-sections. The results are also compared with novel predictions, based on infrared and collinear safe jet flavour dressing algorithms. Selected $Z + \ge 1 c$-jet observables, optimized for sensitivity to intrinsic-charm, are compared with benchmark models with different intrinsic-charm fractions.

0 data tables match query

Measurements of inclusive and differential cross-sections of $t\bar{t}\gamma$ production in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
JHEP 10 (2024) 191, 2024.
Inspire Record 2768921 DOI 10.17182/hepdata.146899

Inclusive and differential cross-sections are measured at particle level for the associated production of a top quark pair and a photon ($t\bar{t}\gamma$). The analysis is performed using an integrated luminosity of 140 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of 13 TeV collected by the ATLAS detector. The measurements are performed in the single-lepton and dilepton top quark pair decay channels focusing on $t\bar{t}\gamma$ topologies where the photon is radiated from an initial-state parton or one of the top quarks. The absolute and normalised differential cross-sections are measured for several variables characterising the photon, lepton and jet kinematics as well as the angular separation between those objects. The observables are found to be in good agreement with the Monte Carlo predictions. The photon transverse momentum differential distribution is used to set limits on effective field theory parameters related to the electroweak dipole moments of the top quark. The combined limits using the photon and the $Z$ boson transverse momentum measured in $t\bar{t}$ production in associations with a $Z$ boson are also set.

0 data tables match query

Observation of a $\Lambda_b^0-\overline{\Lambda}_b^0$ production asymmetry in proton-proton collisions at $\sqrt{s} = 7 \textrm{ and } 8\,\textrm{TeV}$

The LHCb collaboration Aaij, Roel ; Abdelmotteleb, Ahmed Sameh Wagih ; Abellán Beteta, Carlos ; et al.
JHEP 10 (2021) 060, 2021.
Inspire Record 1888216 DOI 10.17182/hepdata.114013

This article presents differential measurements of the asymmetry between $\Lambda_b^0$ and $\overline{\Lambda}_b^0$ baryon production rates in proton-proton collisions at centre-of-mass energies of $\sqrt{s}=7$ and $8\,\textrm{TeV}$ collected with the LHCb experiment, corresponding to an integrated luminosity of $3\,\textrm{fb}^{-1}$. The $\Lambda_b^0$ baryons are reconstructed through the inclusive semileptonic decay $\Lambda_b^0\rightarrow\Lambda_c^+\mu^-\overline{\nu}_{\mu}X$. The production asymmetry is measured both in intervals of rapidity in the range $2.15<y<4.10$ and transverse momentum in $2<p_T<27\,\textrm{GeV}/c$. The results are found to be incompatible with symmetric production with a significance of 5.8 standard deviations for both $\sqrt{s}=7$ and $8\,\textrm{TeV}$ data, assuming no $C\!P$ violation in the decay. There is evidence for a trend as a function of rapidity with a significance of 4 standard deviations. Comparisons to predictions from hadronisation models in PYTHIA and heavy-quark recombination are provided. This result constitutes the first observation of a particle-antiparticle asymmetry in $b$-hadron production at LHC energies.

0 data tables match query

Measurement of multijet azimuthal correlations and determination of the strong coupling in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 84 (2024) 842, 2024.
Inspire Record 2780732 DOI 10.17182/hepdata.150596

A measurement is presented of a ratio observable that provides a measure of the azimuthal correlations among jets with large transverse momentum $p_\mathrm{T}$. This observable is measured in multijet events over the range of $p_\mathrm{T}$ = 360-3170 GeV based on data collected by the CMS experiment in proton-proton collisions at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 134 fb$^{-1}$. The results are compared with predictions from Monte Carlo parton-shower event generator simulations, as well as with fixed-order perturbative quantum chromodynamics (pQCD) predictions at next-to-leading-order (NLO) accuracy obtained with different parton distribution functions (PDFs) and corrected for nonperturbative and electroweak effects. Data and theory agree within uncertainties. From the comparison of the measured observable with the pQCD prediction obtained with the NNPDF3.1 NLO PDFs, the strong coupling at the Z boson mass scale is $\alpha_\mathrm{S}(m_\mathrm{Z})$ = 0.1177 $\pm$ 0.0013 (exp) $_{-0.0073}^{+0.0116}$ (theo) = 0.1177 $_{-0.0074}^{+0.0117}$, where the total uncertainty is dominated by the scale dependence of the fixed-order predictions. A test of the running of $\alpha_\mathrm{S}(m_\mathrm{Z})$ in the TeV region shows no deviation from the expected NLO pQCD behaviour.

0 data tables match query

Underlying-event studies with strange hadrons in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Eur.Phys.J.C 84 (2024) 1335, 2024.
Inspire Record 2784422 DOI 10.17182/hepdata.146740

Properties of the underlying-event in $pp$ interactions are investigated primarily via the strange hadrons $K_{S}^{0}$, $\Lambda$ and $\bar\Lambda$, as reconstructed using the ATLAS detector at the LHC in minimum-bias $pp$ collision data at $\sqrt{s} = 13$ TeV. The hadrons are reconstructed via the identification of the displaced two-particle vertices corresponding to the decay modes $K_{S}^{0}\rightarrow\pi^+\pi^-$, $\Lambda\rightarrow\pi^-p$ and $\bar\Lambda\rightarrow\pi^+\bar{p}$. These are used in the construction of underlying-event observables in azimuthal regions computed relative to the leading charged-particle jet in the event. None of the hadronisation and underlying-event physics models considered can describe the data over the full kinematic range considered. Events with a leading charged-particle jet in the range of $10 < p_T \leq 40$ GeV are studied using the number of prompt charged particles in the transverse region. The ratio $N(\Lambda + \bar\Lambda)/N(K_{S}^{0})$ as a function of the number of such charged particles varies only slightly over this range. This disagrees with the expectations of some of the considered Monte Carlo models.

0 data tables match query

Measurement of energy correlators inside jets and determination of the strong coupling $\alpha_\mathrm{S}(m_\mathrm{Z})$

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 133 (2024) 071903, 2024.
Inspire Record 2760466 DOI 10.17182/hepdata.147275

Energy correlators that describe energy-weighted distances between two or three particles in a jet are measured using an event sample of $\sqrt{s}$ = 13 TeV proton-proton collisions collected by the CMS experiment and corresponding to an integrated luminosity of 36.3 fb$^{-1}$. The measured distributions are consistent with the trends in the simulation that reveal two key features of the strong interaction: confinement and asymptotic freedom. By comparing the ratio of the measured three- and two-particle energy correlator distributions with theoretical calculations that resum collinear emissions at approximate next-to-next-to-leading logarithmic accuracy matched to a next-to-leading order calculation, the strong coupling is determined at the Z boson mass: $\alpha_\mathrm{S}(m_\mathrm{Z})$ = 0.1229 $^{+0.0040}_{-0.0050}$, the most precise $\alpha_\mathrm{S}(m_\mathrm{Z})$ value obtained using jet substructure observables.

0 data tables match query

Differential cross-section measurements of the production of four charged leptons in association with two jets using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 01 (2024) 004, 2024.
Inspire Record 2690799 DOI 10.17182/hepdata.144086

Differential cross-sections are measured for the production of four charged leptons in association with two jets. These measurements are sensitive to final states in which the jets are produced via the strong interaction as well as to the purely-electroweak vector boson scattering process. The analysis is performed using proton-proton collision data collected by ATLAS at $\sqrt{s}=13$ TeV and with an integrated luminosity of 140 fb$^{-1}$. The data are corrected for the effects of detector inefficiency and resolution and are compared to state-of-the-art Monte Carlo event generator predictions. The differential cross-sections are used to search for anomalous weak-boson self-interactions that are induced by dimension-six and dimension-eight operators in Standard Model effective field theory.

0 data tables match query