Scaled momentum distributions for the strange hadrons K0s and Lambda/bar Lambda were measured in deep inelastic ep scattering with the ZEUS detector at HERA using an integrated luminosity of 330 pb-1. The evolution of these distributions with the photon virtuality, Q2, was studied in the kinematic region 10<Q2<40000 GeV2 and 0.001<x<0.75, where x is the Bjorken scaling variable. Clear scaling violations are observed. Predictions based on different approaches to fragmentation were compared to the measurements. Leading-logarithm parton-shower Monte Carlo calculations interfaced to the Lund string fragmentation model describe the data reasonably well in the whole range measured. Next-to-leading-order QCD calculations based on fragmentation functions, FFs, extracted from e+e- data alone, fail to describe the measurements. The calculations based on FFs extracted from a global analysis including e+e-, ep and pp data give an improved description. The measurements presented in this paper have the potential to further constrain the FFs of quarks, anti-quarks and gluons yielding K0s and Lambda/bar Lambda strange hadrons.
This paper presents measurements of \k\ and \lam\ production in neutral current, deep inelastic scattering of 26.7 GeV electrons and 820 GeV protons in the kinematic range $ 10 < Q~{2} < 640 $ GeV$~2$, $0.0003 < x < 0.01$, and $y > 0.04$. Average multiplicities for \k\ and \lam\ production are determined for transverse momenta \ \ptr\ $> 0.5 $ GeV and pseudorapidities $\left| \eta \right| < 1.3$. The multiplicities favour a stronger strange to light quark suppression in the fragmentation chain than found in $e~+ e~-$ experiments. The production properties of \k's in events with and without a large rapidity gap with respect to the proton direction are compared. The ratio of neutral \k's to charged particles per event in the measured kinematic range is, within the present statistics, the same in both samples.
We report on the measurement of the Central Exclusive Production of charged particle pairs $h^{+}h^{-}$ ($h = \pi, K, p$) with the STAR detector at RHIC in proton-proton collisions at $\sqrt{s} = 200$ GeV. The charged particle pairs produced in the reaction $pp\to p^\prime+h^{+}h^{-}+p^\prime$ are reconstructed from the tracks in the central detector, while the forward-scattered protons are measured in the Roman Pot system. Differential cross sections are measured in the fiducial region, which roughly corresponds to the square of the four-momentum transfers at the proton vertices in the range $0.04~\mbox{GeV}^2 < -t_1 , -t_2 < 0.2~\mbox{GeV}^2$, invariant masses of the charged particle pairs up to a few GeV and pseudorapidities of the centrally-produced hadrons in the range $|\eta|<0.7$. The measured cross sections are compared to phenomenological predictions based on the Double Pomeron Exchange (DPE) model. Structures observed in the mass spectra of $\pi^{+}\pi^{-}$ and $K^{+}K^{-}$ pairs are consistent with the DPE model, while angular distributions of pions suggest a dominant spin-0 contribution to $\pi^{+}\pi^{-}$ production. The fiducial $\pi^+\pi^-$ cross section is extrapolated to the Lorentz-invariant region, which allows decomposition of the invariant mass spectrum into continuum and resonant contributions. The extrapolated cross section is well described by the continuum production and at least three resonances, the $f_0(980)$, $f_2(1270)$ and $f_0(1500)$, with a possible small contribution from the $f_0(1370)$. Fits to the extrapolated differential cross section as a function of $t_1$ and $t_2$ enable extraction of the exponential slope parameters in several bins of the invariant mass of $\pi^+\pi^-$ pairs. These parameters are sensitive to the size of the interaction region.
In this Letter, comprehensive results on ${\rm\pi}^\pm$, K$^\pm$, K$^0_S$, p, $\rm\bar{p}$, $\rm \Lambda$ and $\rm \bar{\Lambda}$ production at mid-rapidity ($0 < y_{\rm cms} < 0.5$) in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV, measured by the ALICE detector at the LHC, are reported. The transverse momentum distributions exhibit a hardening as a function of event multiplicity, which is stronger for heavier particles. This behavior is similar to what has been observed in pp and Pb-Pb collisions at the LHC. The measured $p_{\rm T}$ distributions are compared to results at lower energy and with predictions based on QCD-inspired and hydrodynamic models.
The $\bar{\Lambda} / \Lambda$ and $\bar{\Lambda} / K^0_\mathrm{S}$ production ratios are measured by the LHCb detector from $0.3\,\mathrm{nb}^{-1}$ of $pp$ collisions delivered by the LHC at $\sqrt{s} = 0.9$\,TeV and $1.8\,\mathrm{nb}^{-1}$ at $\sqrt{s} = 7$\,TeV. Both ratios are presented as a function of transverse momentum, $p_\mathrm{T}$, and rapidity, $y$, in the ranges {$0.15 < p_\mathrm{T} < 2.50\,\mathrm{GeV}/c$} and {$2.0<y<4.5$}. Results at the two energies are in good agreement as a function of rapidity loss, $\Delta y = y_\mathrm{beam} - y$, and are consistent with previous measurements. The ratio $\bar{\Lambda} / \Lambda$, measuring the transport of baryon number from the collision into the detector, is smaller in data than predicted in simulation, particularly at high rapidity. The ratio $\bar{\Lambda} / K^0_\mathrm{S}$, measuring the baryon-to-meson suppression in strange quark hadronisation, is significantly larger than expected.
The production cross sections for the Λ, Σ0, Ξ−, Σ0 (1385), Ξ0 (1530) and Ω− hyperons have been measured, both in the continuum and in direct ϒ decays. Baryon rates in direct ϒ decays are enhanced by a factor of 2.5 or more compared to the continuum. Such a large baryon enhancement cannot be explained by standard fragmentation models. The strangeness suppression for baryons and mesons turns out to be the same. A strong suppression of spin 3/2 states is observed.
We use 772$\times 10^6$ $B \bar{B}$ meson pairs collected at the $\Upsilon(4S)$ resonance with the Belle detector to measure the branching fraction for $\bar{B} \rightarrow X_s \gamma$. Our measurement uses a sum-of-exclusives approach in which 38 of the hadronic final states with strangeness equal to $+1$, denoted by $X_s$, are reconstructed. The inclusive branching fraction for $M_{X_s}<$ 2.8 GeV/$c^2$, which corresponds to a minimum photon energy of 1.9 GeV, is measured to be ${\cal B}(\bar{B} \rightarrow X_s \gamma)=(3.51\pm0.17\pm0.33)\times10^{-4}$, where the first uncertainty is statistical and the second is systematic.
Production of $B_c^+$ mesons in proton-proton collisions at a center-of-mass energy of 8 TeV is studied with data corresponding to an integrated luminosity of $2.0~{\rm fb}^{-1}$ recorded by the LHCb experiment. The ratio of production cross-sections times branching fractions between the $B_c^+\to J/\psi \pi^+$ and $B^+\to J/\psi K^+$ decays is measured as a function of transverse momentum and rapidity in the regions $0 < p_{\rm T} < 20~{\rm GeV}/c$ and $2.0 < y < 4.5$. The ratio in this kinematic range is measured to be $(0.683\pm0.018\pm0.009)\%$, where the first uncertainty is statistical and the second systematic.
The production of $\pi^+$, $\pi^-$, $K^+$, $K^-$, p, and pbar at mid-rapidity has been measured in proton-proton collisions at $\sqrt{s} = 900$ GeV with the ALICE detector. Particle identification is performed using the specific energy loss in the inner tracking silicon detector and the time projection chamber. In addition, time-of-flight information is used to identify hadrons at higher momenta. Finally, the distinctive kink topology of the weak decay of charged kaons is used for an alternative measurement of the kaon transverse momentum ($p_{\rm T}$) spectra. Since these various particle identification tools give the best separation capabilities over different momentum ranges, the results are combined to extract spectra from $p_{\rm T}$ = 100 MeV/$c$ to 2.5 GeV/$c$. The measured spectra are further compared with QCD-inspired models which yield a poor description. The total yields and the mean $p_{\rm T}$ are compared with previous measurements, and the trends as a function of collision energy are discussed.
The Lambda(b) differential production cross section and the cross section ratio anti-Lambda(b)/Lambda(b) are measured as functions of transverse momentum pt(Lambda(b)) and rapidity abs(y(Lambda(b))) in pp collisions at sqrt(s) = 7 TeV using data collected by the CMS experiment at the LHC. The measurements are based on Lambda(b) decays reconstructed in the exclusive final state J/Psi Lambda, with the subsequent decays J/Psi to an opposite-sign muon pair and Lambda to proton pion, using a data sample corresponding to an integrated luminosity of 1.9 inverse femtobarns. The product of the cross section times the branching ratio for Lambda(b) to J/Psi Lambda versus pt(Lambda(b)) falls faster than that of b mesons. The measured value of the cross section times the branching ratio for pt(Lambda(b)) > 10 GeV and abs(y(Lambda(b))) < 2.0 is 1.06 +/- 0.06 +/- 0.12 nb, and the integrated cross section ratio for anti-Lambda(b)/Lambda(b) is 1.02 +/- 0.07 +/- 0.09, where the uncertainties are statistical and systematic, respectively.