Multihadronic e+e− annihilation events at a center-of-mass energy of 29 GeV have been studied with both the original (PEP 5) Mark II and the upgraded Mark II detectors. Detector-corrected distributions from global shape analyses such as aplanarity, Q2-Q1, sphericity, thrust, minor value, oblateness, and jet masses, and inclusive charged-particle distributions including x, rapidity, p⊥, and particle flow are presented. These distributions are compared with predictions from various multihadron event models which use leading-logarithmic shower evolution or QCD matrix elements at the parton level and string or cluster fragmentation for hadronization. The new generation of parton-shower models gives, on the average, a better description of the data than the previous parton-shower models. The energy behavior of these models is compared to existing e+e− data. The predictions of the models at a center-of-mass energy of 93 GeV, roughly the expected mass of the Z0, are also presented.
First results from the magnetic detector PLUTO at the new e + e − storage ring PETRA are shown. The ratio R of the cross section for hadron production to that for μ-pair production has been measured to be R = 5.0 ± 0.5 at 13 GeV and 4.3 ±0.5 at 17 GeV. Both values have an additional systematic error of 20%. The events show a typical 2-jet structure. The mean transverse momentum approaches a constant value with increasing energy implying a shrinkage of the jet opening angle.
The production rates of D*+-, Ds*+-, D+-, D0 / D0bar, Ds+, and Lambda_c in Z to ccbar decays are measured using the LEP I data sample recorded by the ALEPH detector. The fractional energy spectrum of the D*+- is well described as the sum of three contributions: charm hadronisation, b hadron decays and gluon splitting into a pair of heavy quarks. The probability for a c quark to hadronise into a D*+ is found to be f(c to D*+) = 0.233 +- 0.010 (stat.) +- 0.011 (syst.). The average fraction of the beam energy carried by D*+- mesons in Z to cc events is measured to be < X_E (D*+-) >_cc = 0.4878 +- 0.0046 (stat.) +- 0.0061 (syst.). The D*+- energy and the hemisphere mass imbalance distributions are simultaneously used to measure the fraction of hadronic Z decays in which a gluon splits to a cc pair: n_{gluon to cc} = (3.23 +- 0.48 (stat.) +- 0.53 (syst.) %. The ratio of the Vector/(Vector+Pseudoscalar) production rates in charmed mesons is found to be P_V = 0.595 +- 0.045. The fractional decay width of the Z into cc pairs is determined from the sum of the production rates for various weakly decaying charmed states to be Rc = 0.1738 +- 0.0047 (stat.) +- 0.0116 (syst.).
We present measurements of the inclusive production of antideuterons in $e^+e^-$ annihilation into hadrons at $\approx 10.58 \mathrm{\,Ge\kern -0.1em V}$ center-of-mass energy and in $\Upsilon(1S,2S,3S)$ decays. The results are obtained using data collected by the BABAR detector at the PEP-II electron-positron collider. Assuming a fireball spectral shape for the emitted antideuteron momentum, we find $\mathcal{B}(\Upsilon(1S) \to \bar{d}X) = (2.81 \pm 0.49 \mathrm{(stat)} {}^{+0.20}_{-0.24} \mathrm{(syst)})/! \times /! 10^{-5}$, $\mathcal{B}(\Upsilon(2S) \to \bar{d}X) = (2.64 \pm 0.11 \mathrm{(stat)} {}^{+0.26}_{-0.21} \mathrm{(syst)})/! \times /! 10^{-5}$, $\mathcal{B}(\Upsilon(3S) \to \bar{d}X) = (2.33 \pm 0.15 \mathrm{(stat)} {}^{+0.31}_{-0.28} \mathrm{(syst)})/! \times /! 10^{-5}$, and $\sigma (e^+e^- \to \bar{d}X) = (9.63 \pm 0.41 \mathrm{(stat)} {}^{+1.17}_{-1.01} \mathrm{(syst)}) \mbox{\,fb}$.
The cross section and jet rates ofZ0 decays into photons and quarks are compared with matrix element Monte Carlos ofO(ααs). Good agreement is found between data and theoretical predic
Using a data sample with a total integrated luminosity of 10.0 pb$^{-1}$ collected at center-of-mass energies of 2.6, 3.07 and 3.65 GeV with BESII, cross sections for $e^+e^-$ annihilation into hadronic final states ($R$ values) are measured with statistical errors that are smaller than 1%, and systematic errors that are about 3.5%. The running strong interaction coupling constants $\alpha_s^{(3)}(s)$ and $\alpha_s^{(5)}(M_Z^2)$ are determined from the $R$ values.
Using the CLEO-c detector at the Cornell Electron Storage Ring, we have measured inclusive and exclusive cross sections for the production of D+, D0 and Ds+ mesons in e+e- annihilations at thirteen center-of-mass energies between 3.97 and 4.26 GeV. Exclusive cross sections are presented for final states consisting of two charm mesons (DD, D*D, D*D*, Ds+Ds-, Ds*+Ds-, and Ds*+Ds*-) and for processes in which the charm-meson pair is accompanied by a pion. No enhancement in any final state is observed at the energy of the Y(4260).
We have updated our measurement of the cross section for e^+e^- -> psi(3770) -> hadrons, our publication "Measurement of sigma(e^+e^- -> psi(3770) -> hadrons) at E_{c.m.} = 3773 MeV", arXiv:hep-ex/0512038, Phys.Rev.Lett.96, 092002 (2006). Simultaneous with this arXiv update, we have published an erratum in Phys.Rev.Lett.104, 159901 (2010). There, and in this update, we have corrected a mistake in the computation of the error on the difference of the cross sections for e^+e^- -> psi(3770) -> hadrons and e^+e^- -> psi(3770) -> DDbar. We have also used a more recent CLEO measurement of cross section for e^+e^- -> psi(3770) -> DDbar. From this, we obtain an upper limit on the branching fraction for psi(3770) -> non-DDbar of 9% at 90% confidence level.
Using the CLEO III detector, we measure absolute cross sections for e+e- --> hadrons at seven center-of-mass energies between 6.964 and 10.538 GeV. The values of R, the ratio of hadronic and muon pair production cross sections, are determined within 2% total r.m.s. uncertainty.