A Study of charged particle multiplicities in hadronic decays of the Z0

The OPAL collaboration Acton, P.D. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 53 (1992) 539-554, 1992.
Inspire Record 321190 DOI 10.17182/hepdata.14774

We present an analysis of multiplicity distributions of charged particles produced inZ0 hadronic decays. The results are based on the analysis of 82941 events collected within 100 MeV of theZ0 peak energy with the OPAL detector at LEP. The charged particle multiplicity distribution, corrected for initial-state radiation and for detector acceptance and resolution, was found to have a mean 〈nch〉=21.40±0.02(stat.)±0.43(syst.) and a dispersionD=6.49±0.02(stat.)±0.20(syst.). The shape is well described by the Lognormal and Gamma distributions. A negative binomial parameterisation was found to describe the shape of the multiplicity distribution less well. A comparison with results obtained at lower energies confirms the validity of KNO(-G) scaling up to LEP energies. A separate analysis of events with low sphericity, typically associated with two-jet final states, shows the presence of features expected for models based on a stochastic production mechanism for particles. In all cases, the features observed in the data are well described by the Lund parton shower model JETSET.

0 data tables match query

Charged and Identified Particles in the Hadronic Decay of W Bosons and in e+e- -> q qbar from 130 to 200 GeV

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 18 (2000) 203-228, 2000.
Inspire Record 526164 DOI 10.17182/hepdata.43294

Inclusive distributions of charged particles in hadronic W decays are experimentally investigated using the statistics collected by the DELPHI experiment at LEP during 1997, 1998 and 1999, at centre-of-mass energies from 183 to around 200 GeV. The possible effects of interconnection between the hadronic decays of two Ws are not observed. Measurements of the average multiplicity for charged and identified particles in q qbar and WW events at centre-of-mass energies from 130 to 200 GeV and in W decays are presented. The results on the average multiplicity of identified particles and on the position xi^* of the maximum of the xi_p = -log(2p/sqrt(s)) distribution are compared with predictions of JETSET and MLLA calculations.

0 data tables match query

Charged particle momentum spectra in e+ e- annihilation at s**(1/2) = 192-GeV - 209-GeV.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 27 (2003) 467-481, 2003.
Inspire Record 595335 DOI 10.17182/hepdata.48893

Charged particle momentum distributions are studied in the reaction e+e- -> hadrons, using data collected with the OPAL detector at centre-of-mass energies from 192 GeV to 209 GeV. The data correspond to an average centre-of- mass energy of 201.7 GeV and a total integrated luminosity of 433 pb-1. The measured distributions and derived quantities, in combination with corresponding results obtained at lower centre-of-mass energies, are compared to QCD predictions in various theoretical approaches to study the energy dependence of the strong interaction and to test QCD as the theory describing it. In general, a good agreement is found between the measurements and the corresponding QCD predictions.

0 data tables match query

Charged particle multiplicity distributions for fixed number of jets in Z0 hadronic decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Z.Phys.C 56 (1992) 63-76, 1992.
Inspire Record 334948 DOI 10.17182/hepdata.14533

The multiplicity distributions of charged particles in full phase space and in restricted rapidity intervals for events with a fixed number of jets measured by the DELPHI detector are presented. The data are well reproduced by the Lund Parton Shower model and can also be well described by fitted negative binomial distributions. The properties of these distributions in terms of the clan model are discussed. In symmetric 3-jet events the candidate gluon jet is found not to be significantly different in average multiplicity than the mean of the other two jets, thus supporting previous results of the HRS and OPAL experiments. Similar results hold for events generated according to the LUND PS and to the HERWIG models, when the jets are defined by the JADE jet finding algorithm. The method seems to be insensitive for measuring the color charge ratio between gluons and quarks.

0 data tables match query

Charged particle multiplicity distributions in Z0 hadronic decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Z.Phys.C 50 (1991) 185-194, 1991.
Inspire Record 301657 DOI 10.17182/hepdata.15028

This paper presents an analysis of the multiplicity distributions of charged particles produced inZ0 hadronic decays in the DELPHI detector. It is based on a sample of 25364 events. The average multiplicity is <nch>=20.71±0.04(stat)±0.77(syst) and the dispersionD=6.28±0.03(stat)±0.43(syst). The data are compared with the results at lower energies and with the predictions of phenomenological models. The Lund parton shower model describes the data reasonably well. The multiplicity distributions show approximate KNO-scaling. They also show positive forward-backward correlations that are strongest in the central region of rapidity and for particles of opposite charge.

0 data tables match query

Charged particle multiplicity distributions in restricted rapidity intervals in Z0 hadronic decays.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Z.Phys.C 52 (1991) 271-281, 1991.
Inspire Record 324035 DOI 10.17182/hepdata.14860

The multiplicity distributions of charged particles in restricted rapidity intervals inZ0 hadronic decays measured by the DELPHI detector are presented. The data reveal a shoulder structure, best visible for intervals of intermediate size, i.e. for rapidity limits around ±1.5. The whole set of distributions including the shoulder structure is reproduced by the Lund Parton Shower model. The structure is found to be due to important contributions from 3-and 4-jet events with a hard gluon jet. A different model, based on the concept of independently produced groups of particles, “clans”, fluctuating both in number per event and particle content per clan, has also been used to analyse the present data. The results show that for each interval of rapidity the average number of clans per event is approximately the same as at lower energies.

0 data tables match query

Charged-particle multiplicities of quark and gluon jets in e+ e- annihilation at TRISTAN.

The TOPAZ collaboration Nakabayashi, K. ; Yamauchi, M. ; Abe, K. ; et al.
Phys.Lett.B 413 (1997) 447-452, 1997.
Inspire Record 454183 DOI 10.17182/hepdata.28238

Charged-particle multiplicity was studied in e + e − annihilation at s = 57.8 GeV using the TOPAZ detector at TRISTAN. The average multiplicity was 〈 n ch 〉 = 17.64± 0.05(stat.) ± 0.41(syst.). It was found that the multiplicity depends on the thrust ( T ) of an event. From extrapolating this relation to T = 2 3 , the multiplicity for three-fold symmetric events was estimated to be 〈n ch 〉 T = 2 3 = 23.50 −1.45 +1.25 . From this, the multiplicity ratio between gluon- and quark-jet was estimated to be r g q = 1.46 −0.13 +0.09 without any possible bias from jet clustering.

0 data tables match query

Consistent measurements of alpha(s) from precise oriented event shape distributions.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 14 (2000) 557-584, 2000.
Inspire Record 522656 DOI 10.17182/hepdata.13245

An updated analysis using about 1.5 million events recorded at $\sqrt{s} = M_Z$ with the DELPHI detector in 1994 is presented. Eighteen infrared and collinear safe event shape observables are measured as a function of the polar angle of the thrust axis. The data are compared to theoretical calculations in ${\cal O} (\alpha_s^2)$ including the event orientation. A combined fit of $\alpha_s$ and of the renormalization scale $x_{\mu}$ in $\cal O(\alpha_s^2$) yields an excellent description of the high statistics data. The weighted average from 18 observables including quark mass effects and correlations is $\alpha_s(M_Z^2) = 0.1174 \pm 0.0026$. The final result, derived from the jet cone energy fraction, the observable with the smallest theoretical and experimental uncertainty, is $\alpha_s(M_Z^2) = 0.1180 \pm 0.0006 (exp.) \pm 0.0013 (hadr.) \pm 0.0008 (scale) \pm 0.0007 (mass)$. Further studies include an $\alpha_s$ determination using theoretical predictions in the next-to-leading log approximation (NLLA), matched NLLA and $\cal O(\alpha_s^2$) predictions as well as theoretically motivated optimized scale setting methods. The influence of higher order contributions was also investigated by using the method of Pad\'{e} approximants. Average $\alpha_s$ values derived from the different approaches are in good agreement.

0 data tables match query

Measurement of R and determination of the charged particle multiplicity in e+ e- annihilation at s**(1/2) around 10-GeV

The ARGUS collaboration Albrecht, H. ; Ehrlichmann, H. ; Hamacher, T. ; et al.
Z.Phys.C 54 (1992) 13-20, 1992.
Inspire Record 319102 DOI 10.17182/hepdata.14708

We have measured theR value in non-resonante+e− annihilation using the ARGUS detector at the storage ring DORIS II. At a centre-of-mass energy\(\sqrt s= 9.36\) GeV the ratio of the hadronic cross-section to the μ-pair cross section in lowest order QED has been determined to beR=3.46±0.03±0.13. In addition, we have measured the charged-particle multiplicities in non-resonant hadron production at\(\sqrt s= 10.47\) GeV just below theB\(\bar B\) threshold and in ϒ (4S) resonance decays. For the average charged-particle multiplicities in continuum events and ϒ(4S)→B\(\bar B\) decays we obtain <n>cont=8.35±0.02±0.20 and <n>ϒ(4s)=10.81±0.05±0.23.

0 data tables match query

Measurement of inclusive particle spectra and test of MLLA prediction in e+ e- annihilation at s**(1/2) = 58-GeV

The TOPAZ collaboration Itoh, R. ; Yamauchi, M. ; Yamaguchi, A. ; et al.
Phys.Lett.B 345 (1995) 335-342, 1995.
Inspire Record 381900 DOI 10.17182/hepdata.38345

Inclusive momentum spectra are measured for all charged particles and for each of $\pi~{\pm}$, $K~{\pm}$, $K~0/\overline{K~0}$, and $p/\overline{p}$ in hadronic events produced via $e~+e~-$ annihilation at $\sqrt{s}$=58GeV . The measured spectra are compared with QCD predictions based on the modified leading log approximation(MLLA). The MLLA model reproduces the measured spectra well. The energy dependence of the peak positions of the spectra is studied by comparing the measurements with those at other energies. The energy dependence is also well described by the MLLA model.

0 data tables match query