Differential cross-section for W boson production as a function of transverse momentum in p anti-p collisions at s**(1/2) = 1.8-TeV

The D0 collaboration Abbott, B. ; Abdesselam, A. ; Abolins, M. ; et al.
Phys.Lett.B 513 (2001) 292-300, 2001.
Inspire Record 535017 DOI 10.17182/hepdata.42950

We report a measurement of the differential cross section for W boson production as a function of its transverse momentum in proton-antiproton collisions at sqrt{s} = 1.8 TeV. The data were collected by the D0 experiment at the Fermilab Tevatron Collider during 1994-1995 and correspond to an integrated luminosity of 85 pb^{-1}. The results are in good agreement with quantum chromodynamics over the entire range of transverse momentum.

0 data tables match query

Measurement of Cross Sections for b Jet Production in Events with a Z Boson in p-anti-p Collisions at s**(1/2) = 1.96-TeV

The CDF collaboration Aaltonen, T. ; Adelman, Jahred A. ; Akimoto, T. ; et al.
Phys.Rev.D 79 (2009) 052008, 2009.
Inspire Record 806082 DOI 10.17182/hepdata.51885

A measurement of the $\bjet$ production cross section is presented for events containing a $Z$ boson produced in $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV, using data corresponding to an integrated luminosity of 2 fb$^{-1}$ collected by the CDF II detector at the Tevatron. $Z$ bosons are selected in the electron and muon decay modes. Jets are considered with transverse energy $E_T>20$ GeV and pseudorapidity $|\eta|<1.5$ and are identified as $\bjets$ using a secondary vertex algorithm. The ratio of the integrated $Z+\bjet$ cross section to the inclusive $Z$ production cross section is measured to be $3.32 \pm 0.53 {\rm (stat.)} \pm 0.42 {\rm (syst.)}\times 10^{-3}$. This ratio is also measured differentially in jet $E_T$, jet $\eta$, $Z$-boson transverse momentum, number of jets, and number of $\bjets$. The predictions from leading order Monte Carlo generators and next-to-leading-order QCD calculations are found to be consistent with the measurements within experimental and theoretical uncertainties.

0 data tables match query

Measurement of differential Z / gamma* + jet + X cross sections in p anti-p collisions at s**(1/2) = 1.96-TeV

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Lett.B 669 (2008) 278-286, 2008.
Inspire Record 792812 DOI 10.17182/hepdata.49090

We present new measurements of differential cross sections for Z/gamma*(->mumu)+jet+X production in a 1 fb-1 data sample collected with the D0 detector in proton anti-proton collisions at sqrt{s}=1.96 TeV. Results include the first measurements differential in the Z/gamma* transverse momentum and rapidity, as well as new measurements differential in the leading jet transverse momentum and rapidity. Next-to-leading order perturbative QCD predictions are compared to the measurements, and reasonable agreement is observed, except in the region of low Z/gamma* transverse momentum. Predictions from two event generators based on matrix elements and parton showers, and one pure parton shower event generator are also compared to the measurements. These show significant overall normalization differences to the data and have varied success in describing the shape of the distributions.

0 data tables match query

Measurement of direct photon pair production cross sections in ppbar collisions at sqrt(s)=1.96 TeV

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Lett.B 690 (2010) 108-117, 2010.
Inspire Record 846997 DOI 10.17182/hepdata.54534

We present a measurement of direct photon pair production cross sections using 4.2 fb-1 of data collected with the D0 detector at the Fermilab Tevatron proton-antiproton Collider. We measure single differential cross sections as a function of the diphoton mass, the transverse momentum of the diphoton system, the azimuthal angle between the photons, and the polar scattering angle of the photons, as well as the double differential cross sections considering the last three kinematic variables in three diphoton mass bins. The results are compared with different perturbative QCD predictions and event generators.

0 data tables match query

Measurement of inclusive jet cross-sections in Z/gamma*(---> e+ e-) + jets production in p anti-p collisions at s**(1/2) = 1.96-TeV

The CDF collaboration Aaltonen, T. ; Adelman, Jahred A. ; Akimoto, T. ; et al.
Phys.Rev.Lett. 100 (2008) 102001, 2008.
Inspire Record 768451 DOI 10.17182/hepdata.50623

Inclusive jet cross sections in Z/gamma^* events, with Z/gamma^* decaying into an electron-positron pair, are measured as a function of jet transverse momentum and jet multiplicity in ppbar collisions at sqrt{s} = 1.96 TeV with the upgraded Collider Detector at Fermilab in Run II, based on an integrated luminosity of 1.7 fb^-1. The measurements cover the rapidity region | yjet | < 2.1 and the transverse momentum range ptjet > 30 GeV/c. Next-to-leading order perturbative QCD predictions are in good agreement with the measured cross sections.

0 data tables match query

Measurement of the inclusive differential cross-section for Z bosons as a function of transverse momentum in anti-p p collisions at S**(1/2) = 1.8-TeV

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.D 61 (2000) 032004, 2000.
Inspire Record 503361 DOI 10.17182/hepdata.42104

We present a measurement of the differential cross section as a function of transverse momentum of the Z boson in ppbar collisions at sqrt{s}=1.8 TeV using data collected by the D0 experiment at the Fermilab Tevatron Collider during 1994--1996. We find good agreement between our data and the NNLO resummation prediction and extract values of the non-perturbative parameters for the resummed prediction from a fit to the differential cross section.

0 data tables match query

Measurement of the normalized Z/gamma*->mu+mu- transverse momentum distribution in p\bar{p} collisions at sqrt{s}=1.96 TeV

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Abolins, Maris A. ; et al.
Phys.Lett.B 693 (2010) 522-530, 2010.
Inspire Record 856972 DOI 10.17182/hepdata.55457

We present a new measurement of the Z/gamma* transverse momentum distribution in the range 0 - 330GeV, in proton-antiproton collisions at sqrt{s}=1.96 TeV. The measurement uses 0.97 fb-1 of integrated luminosity recorded by the D0 experiment and is the first using the Z/gamma*->mu+mu- + X channel at this center-of-mass energy. This is also the first measurement of the Z/gamma* transverse momentum distribution that presents the result at the level of particles entering the detector, minimizing dependence on theoretical models. As any momentum of the Z/gamma* in the plane transverse to the incoming beams must be balanced by some recoiling system, primarily the result of QCD radiation in the initial state, this variable is an excellent probe of the underlying process. Tests of the predictions of QCD calculations and current event generators show they have varied success in describing the data. Using this measurement as an input to theoretical predictions will allow for a better description of hadron collider data and hence it will increase experimental sensitivity to rare signals.

0 data tables match query

Measurement of the ratio of differential cross-sections for W and Z boson production as a function of transverse momentum in p anti-p collisions at s**(1/2) = 1.8-TeV

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Abdesselam, A. ; et al.
Phys.Lett.B 517 (2001) 299-308, 2001.
Inspire Record 559624 DOI 10.17182/hepdata.42897

We report on a measurement of the ratio of the differential cross sections for W and Z boson production as a function of transverse momentum in proton-antiproton collisions at sqrt(s) = 1.8 TeV. This measurement uses data recorded by the D0 detector at the Fermilab Tevatron in 1994-1995. It represents the first investigation of a proposal that ratios between W and Z observables can be calculated reliably using perturbative QCD, even when the individual observables are not. Using the ratio of differential cross sections reduces both experimental and theoretical uncertainties, and can therefore provide smaller overall uncertainties in the measured mass and width of the W boson than current methods used at hadron colliders.

0 data tables match query

Measurement of the shape of the boson transverse momentum distribution in p anti-p ---> Z / gamma* ---> e+ e- + X events produced at s**(1/2) = 1.96-TeV

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 100 (2008) 102002, 2008.
Inspire Record 769689 DOI 10.17182/hepdata.50920

We present a measurement of the shape of the Z/gamma* boson transverse momentum (qT) distribution in ppbar -> Z/gamma* -> ee+X events at a center-of-mass energy of 1.96 TeV using 0.98 fb-1 of data collected with the D0 detector at the Fermilab Tevatron collider. The data are found to be consistent with the resummation prediction at low qT, but above the perturbative QCD calculation in the region of qT>30 GeV/c. Using events with qT<30 GeV/c, we extract the value of g2, one of the non-perturbative parameters for the resummation calculation. Data at large boson rapidity y are compared with the prediction of resummation and with alternative models that employ a resummed form factor with modifications in the small Bjorken x region of the proton wave function.

0 data tables match query

Measurements of differential cross sections of $Z /\gamma^\ast$+jets+X events in proton anti-proton collisions at $\sqrt{s}$=1.96 TeV

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Lett.B 678 (2009) 45-54, 2009.
Inspire Record 815094 DOI 10.17182/hepdata.51854

We present cross section measurements for Z/gamma*+jets+X production, differential in the transverse momenta of the three leading jets. The data sample was collected with the D0 detector at the Fermilab Tevatron proton anti-proton collider at a center-of-mass energy of 1.96 TeV and corresponds to an integrated luminosity of 1 fb-1. Leading and next-to-leading order perturbative QCD predictions are compared with the measurements, and agreement is found within the theoretical and experimental uncertainties. We also make comparisons with the predictions of four event generators. Two parton-shower-based generators show significant shape and normalization differences with respect to the data. In contrast, two generators combining tree-level matrix elements with a parton shower give a reasonable description of the the shapes observed in data, but the predicted normalizations show significant differences with respect to the data, reflecting large scale uncertainties. For specific choices of scales, the normalizations for either generator can be made to agree with the measurements.

0 data tables match query