Charged particle multiplicity distributions in restricted rapidity intervals in Z0 hadronic decays.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Z.Phys.C 52 (1991) 271-281, 1991.
Inspire Record 324035 DOI 10.17182/hepdata.14860

The multiplicity distributions of charged particles in restricted rapidity intervals inZ0 hadronic decays measured by the DELPHI detector are presented. The data reveal a shoulder structure, best visible for intervals of intermediate size, i.e. for rapidity limits around ±1.5. The whole set of distributions including the shoulder structure is reproduced by the Lund Parton Shower model. The structure is found to be due to important contributions from 3-and 4-jet events with a hard gluon jet. A different model, based on the concept of independently produced groups of particles, “clans”, fluctuating both in number per event and particle content per clan, has also been used to analyse the present data. The results show that for each interval of rapidity the average number of clans per event is approximately the same as at lower energies.

0 data tables match query

Consistent measurements of alpha(s) from precise oriented event shape distributions.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 14 (2000) 557-584, 2000.
Inspire Record 522656 DOI 10.17182/hepdata.13245

An updated analysis using about 1.5 million events recorded at $\sqrt{s} = M_Z$ with the DELPHI detector in 1994 is presented. Eighteen infrared and collinear safe event shape observables are measured as a function of the polar angle of the thrust axis. The data are compared to theoretical calculations in ${\cal O} (\alpha_s^2)$ including the event orientation. A combined fit of $\alpha_s$ and of the renormalization scale $x_{\mu}$ in $\cal O(\alpha_s^2$) yields an excellent description of the high statistics data. The weighted average from 18 observables including quark mass effects and correlations is $\alpha_s(M_Z^2) = 0.1174 \pm 0.0026$. The final result, derived from the jet cone energy fraction, the observable with the smallest theoretical and experimental uncertainty, is $\alpha_s(M_Z^2) = 0.1180 \pm 0.0006 (exp.) \pm 0.0013 (hadr.) \pm 0.0008 (scale) \pm 0.0007 (mass)$. Further studies include an $\alpha_s$ determination using theoretical predictions in the next-to-leading log approximation (NLLA), matched NLLA and $\cal O(\alpha_s^2$) predictions as well as theoretically motivated optimized scale setting methods. The influence of higher order contributions was also investigated by using the method of Pad\'{e} approximants. Average $\alpha_s$ values derived from the different approaches are in good agreement.

0 data tables match query

Energy dependence of event shapes and of alpha(s) at LEP-2.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 456 (1999) 322-340, 1999.
Inspire Record 499183 DOI 10.17182/hepdata.49129

Infrared and collinear safe event shape distributions and their mean values are determined using the data taken at five different centre of mass energies above M Z with the DELPHI detector at LEP. From the event shapes, the strong coupling α s is extracted in O ( α s 2 ), NLLA and a combined scheme using hadronisation corrections evaluated with fragmentation model generators as well as using an analytical power ansatz. Comparing these measurements to those obtained at M Z , the energy dependence (running) of α s is accessible. The logarithmic energy slope of the inverse strong coupling is measured to be d α −1 s d log (E cm ) =1.39±0.34( stat )±0.17( syst ) , in good agreement with the QCD expectation of 1.27.

0 data tables match query

First measurement of f2-prime (1525) production in Z0 hadronic decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 379 (1996) 309-318, 1996.
Inspire Record 416741 DOI 10.17182/hepdata.47972

The inclusive production of the f ′ 2 (1525) in hadronic Z 0 decays has been studied in data collected by the DELPHI detector at LEP. The Ring Imaging Cherenkov detectors were important tools in the identification of the decay f ′ 2 (1525) → K + K − . The average number of f ′ 2 (1525) produced per hadronic Z decay, 〈f′ 2 〉 = 0.020 ± 0.005 (stat) ± 0.006 (syst), and the momentum distribution of the f ′ 2 (1525) have both been measured. The mass and width of the f ′ 2 (1525) are found to be 〈M f′ 2 〉 = 1535 ± 5 (stat) ± 4 (syst) MeV/c 2 , (T f′ 2 ;) = 60 ± 20 (stat) ± 19 (syst) MeV/c 2

0 data tables match query

First measurement of the strange quark asymmetry at the Z0 peak

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 67 (1995) 1-14, 1995.
Inspire Record 382285 DOI 10.17182/hepdata.48256

None

0 data tables match query

Hadronization properties of b quarks compared to light quarks in e+ e- --> q anti-q from 183-GeV to 200-GeV.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 479 (2000) 118-128, 2000.
Inspire Record 524693 DOI 10.17182/hepdata.49985

The DELPHI detector at LEP has collected 54 pb^{-1} of data at a centre-of-mass energy around 183 GeV during 1997, 158 pb^{-1} around 189 GeV during 1998, and 187 pb^{-1} between 192 and 200 GeV during 1999. These data were used to measure the average charged particle multiplicity in e+e- -> b bbar events, <n>_{bb}, and the difference delta_{bl} between <n>_{bb} and the multiplicity, <n>_{ll}, in generic light quark (u,d,s) events: delta_{bl}(183 GeV) = 4.55 +/- 1.31 (stat) +/- 0.73 (syst) delta_{bl}(189 GeV) = 4.43 +/- 0.85 (stat) +/- 0.61 (syst) delta_{bl}(200 GeV) = 3.39 +/- 0.89 (stat) +/- 1.01 (syst). This result is consistent with QCD predictions, while it is inconsistent with calculations assuming that the multiplicity accompanying the decay of a heavy quark is independent of the mass of the quark itself.

0 data tables match query

Inclusive Sigma- and Lambda(1520) production in hadronic Z decays.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 475 (2000) 429-447, 2000.
Inspire Record 524694 DOI 10.17182/hepdata.49984

Production of Sigma- and Lambda(1520) in hadronic Z decays has been measured using the DELPHI detector at LEP. The Sigma- is directly reconstructed as a charged track in the DELPHI microvertex detector and is identified by its Sigma -> n pi decay leading to a kink between the Sigma- and pi-track. The reconstruction of the Lambda(1520) resonance relies strongly on the particle identification capabilities of the barrel Ring Imaging Cherenkov detector and on the ionisation loss measurement of the TPC. Inclusive production spectra are measured for both particles. The production rates are measured to be <N_{Sigma-}/N_{Z}^{had}> = 0.081 +/- 0.002 +/- 0.010, <N_{Lambda(1520)}/N_{Z}^{had}> = 0.029 +/- 0.005 +/- 0.005. The production rate of the Lambda(1520) suggests that a large fraction of the stable baryons descend from orbitally excited baryonic states. It is shown that the baryon production rates in Z decays follow a universal phenomenological law related to isospin, strangeness and mass of the particles.

0 data tables match query

Inclusive measurements of the K+- and p / anti-p production in hadronic Z0 decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Nucl.Phys.B 444 (1995) 3-26, 1995.
Inspire Record 394052 DOI 10.17182/hepdata.47973

This analysis, based on a sample of 170000 hadronic Z0 decays, provides a measurement of the K ± and p/ p differential cross sections which is compared to string- and cluster fragmentation models. The total multiplicities for K ± and p/ p per hadronic event were found to be: NK = 2.26 ± 0.18 and N p = 1.07 ± 0.14. The positions ξ * of the maxima of the differential cross sections as a function of ξ = ln(1/ x p ) for K ± and p/ p were determined to be 2.63 ± 0.07 and 2.96 ± 0.16 respectively. A comparison of the ξ * values for various identified particles measured at LEP with the prediction of the Modified Leading Logarithm Approximation with Local Parton Hadron Duality model has been performed. The measured ξ * position as a function of the hadron mass, after corrections due to particle decays, is in agreement with the model calculation.

0 data tables match query

Masses, lifetimes and production rates of Xi- and anti-Xi+ at LEP 1.

The DELPHI collaboration Abdallah, J. ; Abreu, P. ; Adam, W. ; et al.
Phys.Lett.B 639 (2006) 179-191, 2006.
Inspire Record 719387 DOI 10.17182/hepdata.26952

Measurements of the Xi- and anti-Xi+ masses, mass differences, lifetimes and lifetime differences are presented. The anti-Xi+ sample used is much larger than those used previously for such measurements. In addition, the Xi production rates in Z -> b anti-b and Z -> q anti-q events are compared and the position xi* of the maximum of the xi distribution in Z -> q anti-q events is measured.

0 data tables match query

Measurement of Delta++ (1232) production in hadronic Z decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 361 (1995) 207-220, 1995.
Inspire Record 399737 DOI 10.17182/hepdata.48095

A measurement of the Δ ++ (1232) inclusive production in hadronic decays of the Z at LEP is presented, based on 1.3 million hadronic events collected by the DELPHI detector in the 1994 LEP running period. The DELPHI ring imaging Cherenkov counters are used for identifying hadrons. The average Δ ++ (1232) multiplicity per hadronic event is 0.079 ± 0.015 which is more than a factor of two below the JETSET, HERWIG and UCLA model predictions. It agrees with a recently proposed universal mass dependence of particle production rates in e + e − annihilations.

0 data tables match query