Measurement of the Underlying Event Activity at the LHC with sqrt(s)= 7 TeV and Comparison with sqrt(s) = 0.9 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 09 (2011) 109, 2011.
Inspire Record 916908 DOI 10.17182/hepdata.57696

A measurement of the underlying activity in scattering processes with a hard scale in the several GeV region is performed in proton-proton collisions at sqrt(s) = 0.9 and 7 TeV, using data collected by the CMS experiment at the LHC. The production of charged particles with pseudorapidity |eta| < 2 and transverse momentum pT > 0.5 GeV/c is studied in the azimuthal region transverse to that of the leading set of charged particles forming a track-jet. A significant growth of the average multiplicity and scalar-pT sum of the particles in the transverse region is observed with increasing pT of the leading track-jet, followed by a much slower rise above a few GeV/c. For track-jet pT larger than a few GeV/c, the activity in the transverse region is approximately doubled with a centre-of-mass energy increase from 0.9 to 7 TeV. Predictions of several QCD-inspired models as implemented in PYTHIA are compared to the data.

0 data tables match query

Charged particle multiplicities in pp interactions at sqrt(s) = 0.9, 2.36, and 7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M. ; Tumasyan, Armen ; et al.
JHEP 01 (2011) 079, 2011.
Inspire Record 879315 DOI 10.17182/hepdata.57909

Measurements of primary charged hadron multiplicity distributions are presented for non-single-diffractive events in proton-proton collisions at centre-of-mass energies of sqrt(s) = 0.9, 2.36, and 7 TeV, in five pseudorapidity ranges from |eta|<0.5 to |eta|<2.4. The data were collected with the minimum-bias trigger of the CMS experiment during the LHC commissioning runs in 2009 and the 7 TeV run in 2010. The multiplicity distribution at sqrt(s) = 0.9 TeV is in agreement with previous measurements. At higher energies the increase of the mean multiplicity with sqrt(s) is underestimated by most event generators. The average transverse momentum as a function of the multiplicity is also presented. The measurement of higher-order moments of the multiplicity distribution confirms the violation of Koba-Nielsen-Olesen scaling that has been observed at lower energies.

0 data tables match query

Shape, transverse size, and charged hadron multiplicity of jets in pp collisions at 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 06 (2012) 160, 2012.
Inspire Record 1111014 DOI 10.17182/hepdata.70063

Measurements of jet characteristics from inclusive jet production in proton-proton collisions at a centre-of-mass energy of 7 TeV are presented. The data sample was collected with the CMS detector at the LHC during 2010 and corresponds to an integrated luminosity of 36 inverse picobarns. The mean charged hadron multiplicity, the differential and integral jet shape distributions, and two independent moments of the shape distributions are measured as functions of the jet transverse momentum for jets reconstructed with the anti-kT algorithm. The measured observables are corrected to the particle level and compared with predictions from various QCD Monte Carlo generators.

0 data tables match query

Measurement of the underlying event activity using charged-particle jets in proton-proton collisions at sqrt(s) = 2.76 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 09 (2015) 137, 2015.
Inspire Record 1385107 DOI 10.17182/hepdata.69365

A measurement of the underlying event (UE) activity in proton-proton collisions is performed using events with charged-particle jets produced in the central pseudorapidity region (abs(eta[jet]) < 2) and with transverse momentum 1<= pt[jet] < 100 GeV. The analysis uses a data sample collected at a centre-of-mass energy of 2.76 TeV with the CMS experiment at the LHC. The UE activity is measured as a function of pt[jet] in terms of the average multiplicity and scalar sum of transverse momenta (pt) of charged particles, with abs(eta) < 2 and pt > 0.5 GeV, in the azimuthal region transverse to the highest pt jet direction. By further dividing the transverse region into two regions of smaller and larger activity, various components of the UE activity are separated. The measurements are compared to previous results at 0.9 and 7 TeV, and to predictions of several Monte Carlo event generators, providing constraints on the modelling of the UE dynamics.

0 data tables match query

Version 2
Measurements of differential cross sections for associated production of a W boson and jets in proton-proton collisions at sqrt(s)=8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.D 95 (2017) 052002, 2017.
Inspire Record 1491953 DOI 10.17182/hepdata.76995

Differential cross sections for a W boson produced in association with jets are measured in a data sample of proton-proton collisions at a center-of-mass energy of 8 TeV recorded with the CMS detector and corresponding to an integrated luminosity of 19.6 inverse femtobarns. The W bosons are identified through their decay mode W to mu nu. The cross sections are reported as functions of jet multiplicity, transverse momenta, and the scalar sum of jet transverse momenta (HT) for different jet multiplicities. Distributions of the angular correlations between the jets and the muon are examined, as well as the average number of jets as a function of HT and as a function of angular variables. The measured differential cross sections are compared with tree-level and higher-order recent event generators, as well as next-to-leading-order and next-to-next-to-leading-order theoretical predictions. The agreement of the generators with the measurements builds confidence in their use for the simulation of W+jets background processes in searches for new physics at the LHC.

0 data tables match query

Version 2
Measurement of jet substructure observables in $\mathrm{t\overline{t}}$ events from proton-proton collisions at $\sqrt{s} =$ 13TeV

The CMS collaboration Sirunyan, A. M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 98 (2018) 092014, 2018.
Inspire Record 1690148 DOI 10.17182/hepdata.84716

A measurement of jet substructure observables is presented using \ttbar events in the lepton+jets channel from proton-proton collisions at $\sqrt{s}=$ 13 TeV recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. Multiple jet substructure observables are measured for jets identified as bottom, light-quark, and gluon jets, as well as for inclusive jets (no flavor information). The results are unfolded to the particle level and compared to next-to-leading-order predictions from POWHEG interfaced with the parton shower generators PYTHIA 8 and HERWIG 7, as well as from SHERPA 2 and DIRE2. A value of the strong coupling at the Z boson mass, $\alpha_S(m_\mathrm{Z}) = $ 0.115$^{+0.015}_{-0.013}$, is extracted from the substructure data at leading-order plus leading-log accuracy.

0 data tables match query

Cross-Sections and Charged Multiplicity Distributions for pi+ p, K+ p and p p Interactions at 250-GeV/c

The NA22 collaboration Adamus, M. ; Agababyan, N.M. ; Ajinenko, I.V. ; et al.
Z.Phys.C 32 (1986) 475, 1986.
Inspire Record 18431 DOI 10.17182/hepdata.15845

Cross sections and charged multiplicity distributions for π+p,K+p andpp interactions at 250 GeV/c are presented and compared to each other as well as to earlier (for π+p andK+p lower energy) data. Consistently, the meson-proton (M+p) data have narrower multiplicity distributions and higher average multiplicity thanpp data. Up to our energy, generalized KNO functions describe the energy dependence of the shape of the multiplity distribution with one parameter forM+p and one forpp collisions. If interpreted in terms of negative binomials, the parameter 1/k tends to be slightly lower forM+p than forpp data. For both types of hadron-hadron collision, 1/k is larger than fore+e− andlp collisions.

0 data tables match query

Charged track multiplicity in B meson decay

The CLEO collaboration Brandenburg, G. ; Ershov, A. ; Gao, Y.S. ; et al.
Phys.Rev.D 61 (2000) 072002, 2000.
Inspire Record 504672 DOI 10.17182/hepdata.47189

We have used the CLEO II detector to study the multiplicity of charged particles in the decays of B mesons produced at the $\Upsilon(4S)$ resonance. Using a sample of 1.5 x 10^6 B meson pairs, we find the mean inclusive charged particle multiplicity to be 10.71 +- 0.02 +0.21/-0.15 for the decay of the pair. This corresponds to a mean multiplicity of 5.36 +- 0.01 +0.11/-0.08 for a single B meson. Using the same data sample, we have also extracted the mean multiplicities in semileptonic and nonleptonic decays. We measure a mean of 7.82 +- 0.05 +0.21/-0.19 charged particles per $B\bar{B}$ decay when both mesons decay semileptonically. When neither B meson decays semileptonically, we measure a mean charged particle multiplicity of 11.62 +- 0.04 +0.24/-0.18 per $B\bar{B}$ pair.

0 data tables match query

Measurement of the charged particle multiplicity distribution in hadronic Z decays

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Goy, C. ; et al.
Phys.Lett.B 273 (1991) 181-192, 1991.
Inspire Record 319520 DOI 10.17182/hepdata.29273

The charged particle multiplicity distribution of hadronic Z decays was measured on the peak of the Z resonance using the ALEPH detector at LEP. Using a model independent unfolding procedure the distribution was found to have a mean 〈 n 〉=20.85±0.24 and a dispersion D =6.34±0.12. Comparison with lower energy data supports the KNO scaling hypothesis in the energy range s =29−91.25 GeV. At s =91.25 GeV the shape of the multiplicity distribution is well described by a log-normal distribution, as predicted from a cascading model for multi-particle production. The same model also successfully describes the energy dependence of the mean and width of the multiplicity distribution. A next-to-leading order QCD prediction in the framework of the modified leading-log approximation and local parton-hadron duality is found to fit the energy dependence of the mean but not the width of the charged multiplicity distribution, indicating that the width of the multiplicity distribution is a sensitive probe for higher order QCD or non-perturbative effects.

0 data tables match query

Charged jet evolution and the underlying event in proton - anti-proton collisions at 1.8-TeV

The CDF collaboration Affolder, T. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.D 65 (2002) 092002, 2002.
Inspire Record 564673 DOI 10.17182/hepdata.42044

The growth and development of “charged particle jets” produced in proton-antiproton collisions at 1.8 TeV  are studied over a transverse momentum range from 0.5 GeV/c to 50 GeV/c. A variety of leading (highest transverse momentum) charged jet observables are compared with the QCD Monte Carlo models HERWIG, ISAJET, and PYTHIA. The models describe fairly well the multiplicity distribution of charged particles within the leading charged jet, the size of the leading charged jet, the radial distribution of charged particles and transverse momentum around the leading charged jet direction, and the momentum distribution of charged particles within the leading charged jet. The direction of the leading “charged particle jet” in each event is used to define three regions of η−φ space. The “toward” region contains the leading “charged particle jet,” while the “away” region, on the average, contains the away-side jet. The “transverse” region is perpendicular to the plane of the hard 2-to-2 scattering and is very sensitive to the “underlying event” component of the QCD Monte Carlo models. HERWIG, ISAJET, and PYTHIA with their default parameters do not describe correctly all the properties of the “transverse” region.

0 data tables match query