Observation of the J/$\psi$$\to$$\mu^+\mu^-\mu^+\mu^-$ decay in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-BPH-22-006, 2024.
Inspire Record 2769595 DOI 10.17182/hepdata.147273

The J/$\psi$$\to$$\mu^+\mu^-\mu^+\mu^-$ decay has been observed with a statistical significance in excess of five standard deviations. The analysis is based on an event sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS experiment in 2018 and corresponding to an integrated luminosity of 33.6 fb${-1}$. Normalizing to the J/$\psi$$\to$$\mu^+\mu^-$ decay mode leads to a branching fraction [10.1$^{+3.3}_{-2.7}$ (stat) $\pm$ 0.4 (syst) ]$\times$ 10$^{-7}$, a value that is consistent with the standard model prediction.

2 data tables match query

$\mathrm{J}\mspace{-2mu}/\mspace{-2mu}\psi \to \mu\mu\mu\mu$ branching fraction

$\mathcal{B}(\mathrm{J}\mspace{-2mu}/\mspace{-2mu}\psi \to \mu\mu\mu\mu)$ / $\mathcal{B}(\mathrm{J}\mspace{-2mu}/\mspace{-2mu}\psi \to \mu\mu)$ ratio


Search for exotic decays of the Higgs boson to a pair of pseudoscalars in the $\mu\mu$bb and $\tau\tau$bb final states

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-HIG-22-007, 2024.
Inspire Record 2760544 DOI 10.17182/hepdata.145999

A search for exotic decays of the Higgs boson (H) with a mass of 125 GeV to a pair of light pseudoscalars $\mathrm{a}_1$ is performed in final states where one pseudoscalar decays to two b quarks and the other to a pair of muons or $\tau$ leptons. A data sample of proton-proton collisions at $\sqrt{s}$ = 13 TeV corresponding to an integrated luminosity of 138 fb$^{-1}$ recorded with the CMS detector is analyzed. No statistically significant excess is observed over the standard model backgrounds. Upper limits are set at 95% confidence level (CL) on the Higgs boson branching fraction to $\mu\mu$bb and to $\tau\tau$bb, via a pair of $\mathrm{a}_1$s. The limits depend on the pseudoscalar mass $m_{\mathrm{a}_1}$ and are observed to be in the range (0.17-3.3) $\times$ 10$^{-4}$ and (1.7-7.7) $\times$ 10$^{2}$ in the $\mu\mu$bb and $\tau\tau$bb final states, respectively. In the framework of models with two Higgs doublets and a complex scalar singlet (2HDM+S), the results of the two final states are combined to determine model-independent upper limits on the branching fraction $\mathcal{B}$(H $\to$ $\mathrm{a}_1\mathrm{a}_1$ $\to$ $\ell\ell$bb) at 95% CL, with $\ell$ being a muon or a $\tau$ lepton. For different types of 2HDM+S, upper bounds on the branching fraction $\mathcal{B}$(H $\to$ $\mathrm{a}_1\mathrm{a}_1$) are extracted from the combination of the two channels. In most of the Type II 2HDM+S parameter space, $\mathcal{B}($H $\to$ $\mathrm{a}_1\mathrm{a}_1$) values above 0.23 are excluded at 95% CL for $m_{\mathrm{a}_1}$ values between 15 and 60 GeV.

4 data tables match query

Observed and expected upper limits at 95% CL on B($\text{H} \rightarrow \text{a}_{1}\text{a}_{1} \rightarrow \mu\mu$bb) as functions of $m_{\text{a}_{1}}$. The inner and outer bands indicate the regions containing the distribution of limits located within 68 and 95% confidence intervals, respectively, of the expectation under the background-only hypothesis.

Observed and expected upper limits at 95% CL on B($\text{H} \rightarrow \text{a}_{1}\text{a}_{1} \rightarrow \tau\tau$bb) in percent as functions of $m_{\text{a}_{1}}$, for the combination of the $\mu\tau_{\text{h}}$, $e\tau_{\text{h}}$, and $e\mu$ channels. The inner and outer bands indicate the regions containing the distribution of limits located within 68 and 95% confidence intervals, respectively, of the expectation under the background-only hypothesis.

Observed and expected upper limits at 95% CL on B($\text{H} \rightarrow \text{a}_{1}\text{a}_{1} \rightarrow ll$bb) in percent, where $l$ stands for muons or $\tau$ leptons, obtained from the combination of the $\mu\mu$bb and $\tau\tau$bb channels. The results are obtained as functions $m_{\text{a}_{1}}$ for 2HDM+S models, independent of the type and tan $\beta$ parameter. The inner and outer bands indicate the regions containing the distribution of limits located within 68 and 95% confidence intervals, respectively, of the expectation under the background-only hypothesis.

More…

Measurement of the $W^{\pm}Z$ boson pair-production cross section in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS Detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 762 (2016) 1-22, 2016.
Inspire Record 1469071 DOI 10.17182/hepdata.76493

The production of $W^{\pm}Z$ events in proton--proton collisions at a centre-of-mass energy of 13 TeV is measured with the ATLAS detector at the LHC. The collected data correspond to an integrated luminosity of 3.2 fb$^{-1}$. The $W^{\pm}Z$ candidates are reconstructed using leptonic decays of the gauge bosons into electrons or muons. The measured inclusive cross section in the detector fiducial region for leptonic decay modes is $\sigma_{W^\pm Z \rightarrow \ell^{'} \nu \ell \ell}^{\textrm{fid.}} = 63.2 \pm 3.2$ (stat.) $\pm 2.6$ (sys.) $\pm 1.5$ (lumi.) fb. In comparison, the next-to-leading-order Standard Model prediction is $53.4^{+3.6}_{-2.8}$ fb. The extrapolation of the measurement from the fiducial to the total phase space yields $\sigma_{W^{\pm}Z}^{\textrm{tot.}} = 50.6 \pm 2.6$ (stat.) $\pm 2.0$ (sys.) $\pm 0.9$ (th.) $\pm 1.2$ (lumi.) pb, in agreement with a recent next-to-next-to-leading-order calculation of $48.2^{+1.1}_{-1.0}$ pb. The cross section as a function of jet multiplicity is also measured, together with the charge-dependent $W^+Z$ and $W^-Z$ cross sections and their ratio.

11 data tables match query

The measured fiducial cross section in the four channels and their combination. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity uncertainty, the second is the luminosity uncertainty.

The measured fiducial cross section in the four channels and their combination. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity uncertainty, the second is the luminosity uncertainty.

The measured fiducial cross section in the four channels and their combination. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity uncertainty, the second is the luminosity uncertainty.

More…

Search for a heavy charged boson in events with a charged lepton and missing transverse momentum from $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.D 100 (2019) 052013, 2019.
Inspire Record 1739784 DOI 10.17182/hepdata.90193

A search for a heavy charged-boson resonance decaying into a charged lepton (electron or muon) and a neutrino is reported. A data sample of 139 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} = 13$ TeV collected with the ATLAS detector at the LHC during 2015-2018 is used in the search. The observed transverse mass distribution computed from the lepton and missing transverse momenta is consistent with the distribution expected from the Standard Model, and upper limits on the cross section for $pp \to W^\prime \to \ell\nu$ are extracted ($\ell = e$ or $\mu$). These vary between 1.3 pb and 0.05 fb depending on the resonance mass in the range between 0.15 and 7.0 TeV at 95% confidence level for the electron and muon channels combined. Gauge bosons with a mass below 6.0 TeV and 5.1 TeV are excluded in the electron and muon channels, respectively, in a model with a resonance that has couplings to fermions identical to those of the Standard Model $W$ boson. Cross-section limits are also provided for resonances with several fixed $\Gamma / m$ values in the range between 1% and 15%. Model-independent limits are derived in single-bin signal regions defined by a varying minimum transverse mass threshold. The resulting visible cross-section upper limits range between 4.6 (15) pb and 22 (22) ab as the threshold increases from 130 (110) GeV to 5.1 (5.1) TeV in the electron (muon) channel.

0 data tables match query

Coupling Strengths of Weak Neutral Currents From Leptonic Final States at 22-{GeV} and 34-{GeV}

The CELLO collaboration Behrend, H.J. ; Chen, C. ; Fenner, H. ; et al.
Z.Phys.C 16 (1983) 301, 1983.
Inspire Record 180756 DOI 10.17182/hepdata.16385

Differential cross sections fore+e−→e+e−, τ+, τ- measured with the CELLO detector at\(\left\langle {\sqrt s } \right\rangle= 34.2GeV\) have been analyzed for electroweak contributions. Vector and axial vector coupling constants were obtained in a simultaneous fit to the three differential cross sections assuming a universal weak interaction for the charged leptons. The results,v2=−0.12±0.33 anda2=1.22±0.47, are in good agreement with predictions from the standardSU(2)×U(1) model for\(\sin ^2 \theta _w= 0.228\). Combining this result with neutrino-electron scattering data gives a unique axial vector dominated solution for the leptonic weak couplings. Assuming the validity of the standard model, a value of\(\sin ^2 \theta _w= 0.21_{ - 0.09}^{ + 0.14}\) is obtained for the electroweak mixing angle. Additional vector currents are not observed (C<0.031 is obtained at the 95% C.L.).

0 data tables match query

Neutral $D$ Meson Properties in 360-{GeV}/$c \pi^- p$ Interactions

The LEBC-EHS collaboration Aguilar-Benitez, M. ; Allison, W.W. ; Bagnaia, P. ; et al.
Phys.Lett.B 146 (1984) 266-272, 1984.
Inspire Record 202656 DOI 10.17182/hepdata.30495

Based on a sample of 22 four-prong D 0 / D 0 decays produced in hydrogen by 360 GeV/ c π − , we present the following new results: mean lifetime τ = (3.5 −0.9 +1.4 ) x 10 −13 s ; production cross section for x F > 0.0, σ = (10.3 ± 3.5) ωb ; the D → K ± π ± π + π − branching ratio = (7.1 ± 2.5)%.

0 data tables match query

Production of $J/\psi$ in 16-{GeV} and 22-{GeV} $\pi^-$ Cu Collisions

LeBritton, J. ; McCal, D. ; Melissinos, A.C. ; et al.
Phys.Lett.B 81 (1979) 401-404, 1979.
Inspire Record 7053 DOI 10.17182/hepdata.50278

We have measured the inclusive production of J ψ in 16 and 22 GeV π − copper collisions in a wide aperture magnetic spectrometer. The cross section per Cu nucleus for x > 0 corrected for branching ratio is 64 ± 38 nb at 16 GeV and 196 ± 38 nb at 22 GeV. As threshold is approached, the mean values of the Feynman x distribution increase and the cross section for J ψ production drops steeply. This can be understood in terms of the quark-fusion model where the antiquark content of the pion makes an increasingly significant contribution as M 2 s increases.

0 data tables match query

Measurement of the cross section of W-boson pair production at LEP.

The L3 collaboration Achard, P. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 600 (2004) 22-40, 2004.
Inspire Record 658254 DOI 10.17182/hepdata.48792

The cross section of W-boson pair-production is measured with the L3 detector at LEP. In a data sample corresponding to a total luminosity of 629.4/pb, collected at centre-of-mass energies ranging from 189 to 209 GeV, 9834 four-fermion events with W bosons decaying into hadrons or leptons are selected. The total cross section is measured with a precision of 1.4 % and agrees with the Standard Model expectation. Assuming charged-lepton universality, the branching fraction for hadronic W-boson decays is measured to be: Br(W-->hadrons) = 67.50 +- 0.42 (stat.) +- 0.30(syst.) %, in agreement with the Standard Model. Differential cross sections as a function of the W- production angle are also measured for the semi-leptonic channels qqev and qqmv.

11 data tables match query

Measured cross section for the process E+ E- --> LEPTON NU LEPTON NU.

Measured cross section for the process E+ E- --> QUARK QUARKBAR ELECTRON NEUTRINO.

Measured cross section for the process E+ E- --> QUARK QUARKBAR MUON NEUTRINO.

More…

Measurement of exclusive rho0 rho0 production in two photon collisions at high Q**2 at LEP

The L3 collaboration Achard, P. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 568 (2003) 11-22, 2003.
Inspire Record 619620 DOI 10.17182/hepdata.48855

Exclusive rho rho production in two-photon collisions involving a single highly virtual photon is studied with data collected at LEP at centre-of-mass energies 89GeV < \sqrt{s} < 209GeV with a total integrated luminosity of 854.7pb^-1 The cross section of the process gamma gamma^* -> rho rho is determined as a function of the photon virtuality, Q^2 and the two-photon centre-of-mass energy, Wgg, in the kinematic region: 1.2GeV^2 < Q^2 < 30GeV^2 and 1.1GeV < Wgg < 3GeV.

7 data tables match query

Production cross sections as a function of Q**2. The differential cross sections are corrected to the centre of each bin.

Production cross section for the two photon data as a function of Q**2.

Differential cross section for non-resonance and RHO0 RHO0 data corrected to the centre of each bin.

More…

Inclusive $\K^0$(s), $\Lambda$ and Anti-lambda Production in $\pi^+ D$ Interactions at 24-{GeV}/c

Dado, S. ; Goldberg, J. ; Toaff, S. ; et al.
Phys.Rev.D 22 (1980) 2656, 1980.
Inspire Record 8878 DOI 10.17182/hepdata.4164

We have studied inclusive KS0, Λ, and Λ¯ production in π+d interactions at 24 GeV/c. The observed cross sections are 2.5±0.13 mb for KS0, 1.62±0.09 mb for Λ, and 0.12±0.02 mb for Λ¯. Longitudinal- and transverse-momentum distributions of the produced particles are presented. The average charged multiplicities of the system associated with a KS0 or with a Λ are presented and discussed. A nonzero average Λ polarization (-0.10±0.03) is observed. The x distribution of the backward (forward) KS0 and Λ produced in the reaction are in agreement with the x distribution of valence quarks in nucleons in nuclear target (pion beam), as predicted by the quark-recombination model of particle production applied to nuclear targets.

14 data tables match query

Axis error includes +- 0.0/0.0 contribution (?////THE QUOTED IN THE TABLES ERROR INCLUDE ESTIMATES OF UNCERTAINTY IN EACH OF THE CORRECTIONS MADE IN ADDITION TO THE STATISTICAL ERRORCORRECTIONS HAVE BEEN MADE FOR DETECTION, MEASURING, AND FITTING LOSSES AS WELL AS FOR NEUTRAL DECAY MODES OF THE STRANGE PARTICLESNO CORRECTION WAS MADE FOR CONTAMINATION FROM KL'S NOR FOR UNAVOIDABLE INCLUSION OF SIGMA0 EVENTS).

Axis error includes +- 0.0/0.0 contribution (?////THE QUOTED IN THE TABLES ERROR INCLUDE ESTIMATES OF UNCERTAINTY IN EACH OF THE CORRECTIONS MADE IN ADDITION TO THE STATISTICAL ERRORCORRECTIONS HAVE BEEN MADE FOR DETECTION, MEASURING, AND FITTING LOSSES AS WELL AS FOR NEUTRAL DECAY MODES OF THE STRANGE PARTICLESNO CORRECTION WAS MADE FOR CONTAMINATION FROM KL'S NOR FOR UNAVOIDABLE INCLUSION OF SIGMA0 EVENTS).

Axis error includes +- 0.0/0.0 contribution (?////THE QUOTED IN THE TABLES ERROR INCLUDE ESTIMATES OF UNCERTAINTY IN EACH OF THE CORRECTIONS MADE IN ADDITION TO THE STATISTICAL ERRORCORRECTIONS HAVE BEEN MADE FOR DETECTION, MEASURING, AND FITTING LOSSES AS WELL AS FOR NEUTRAL DECAY MODES OF THE STRANGE PARTICLESNO CORRECTION WAS MADE FOR CONTAMINATION FROM KL'S NOR FOR UNAVOIDABLE INCLUSION OF SIGMA0 EVENTS).

More…