A Study of the reaction e+ e- ---> mu+ mu- around the Z0 pole

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Phys.Lett.B 260 (1991) 240-248, 1991.
Inspire Record 314619 DOI 10.17182/hepdata.29420

Measurements of the cross section and forward-backward asymmetry for the reaction e + e − → μ + μ − using the DELPHI detector at LEP are presented. The data come from a scan around the Z 0 peak at seven centre of mass energies, giving a sample of 3858 events in the polar angle region 22° < θ < 158°. From a fit to the cross section for 43° < θ < 137°, a polar angle region for which the absolute efficiency has been determined, the square root of the product of the Z 0 → e + e − and Z 0 → μ + μ − partial widths is determined to be (Γ e Γ μ ) 1 2 = 85.0 ± 0.9( stat. ) ± 0.8( syst. ) MeV . From this measurement of the partial width, the value of the effective weak mixing angle is determined to be sin 2 ( θ w ) = 0.2267 ± 0.0037 . The ratio of the hadronic to muon pair partial widths is found to be Γ h / Γ μ = 19.89 ± 0.40(stat.) ± 0.19(syst.). The forward-backward asymmetry at the resonance peak energy E CMS = 91.22 GeV is found to be A FB = 0.028 ± 0.020(stat.) ± 0.005(syst.). From a combined fit to the cross section and forward-backward asymmetry data, the products of the electron and muon vector and axial-vector coupling constants are determined to be V e V μ = 0.0024 ± 0.0015(stat.) ± 0.0004(syst.) and A e A μ = 0.253 ± 0.003(stat.) ± 0.003 (syst.). The results are in good agreement with the expectations of the minimal standard model.

0 data tables match query

Measurements of the proton and deuteron spin structure functions g1 and g2.

The E143 collaboration Abe, K. ; Akagi, T. ; Anthony, P.L. ; et al.
Phys.Rev.D 58 (1998) 112003, 1998.
Inspire Record 467140 DOI 10.17182/hepdata.22265

Measurements are reported of the proton and deuteron spin structure functions g1 at beam energies of 29.1, 16.2, and 9.7 GeV and g2 at a beam energy of 29.1 GeV. The integrals of g1 over x have been evaluated at fixed Q**2 = 3 (GeV/c)**2 using the full data set. The Q**2 dependence of the ratio g1/F1 was studied and found to be small for Q**2 > 1 (GeV/c)**2. Within experimental precision the g2 data are well-described by the Wandzura-Wilczek twist-2 contribution. Twist-3 matrix elements were extracted and compared to theoretical predictions. The asymmetry A2 was measured and found to be significantly smaller than the positivity limit for both proton and deuteron targets. A2 for the proton is found to be positive and inconsistent with zero. Measurements of g1 in the resonance region show strong variations with x and Q**2, consistent with resonant amplitudes extracted from unpolarized data. These data allow us to study the Q**2 dependence of the first moments of g1 below the scaling region.

1 data table match query

Detailed results of G1(DEUT)/F1(DEUT) for the DIS (W**2 > 4 GeV**2) region. Additional normalisation uncertainty 4.9%.


Higher harmonic anisotropic flow measurements of charged particles in Pb-Pb collisions at sqrt(s_{(NN)}) = 2.76 TeV

The ALICE collaboration Aamodt, K. ; Abelev, B. ; Abrahantes Quintana, A. ; et al.
Phys.Rev.Lett. 107 (2011) 032301, 2011.
Inspire Record 900651 DOI 10.17182/hepdata.62026

We report on the first measurement of the triangular $v_3$, quadrangular $v_4$, and pentagonal $v_5$ charged particle flow in Pb-Pb collisions at 2.76 TeV measured with the ALICE detector at the CERN Large Hadron Collider. We show that the triangular flow can be described in terms of the initial spatial anisotropy and its fluctuations, which provides strong constraints on its origin. In the most central events, where the elliptic flow $v_2$ and $v_3$ have similar magnitude, a double peaked structure in the two-particle azimuthal correlations is observed, which is often interpreted as a Mach cone response to fast partons. We show that this structure can be naturally explained from the measured anisotropic flow Fourier coefficients.

1 data table match query

v2{SP,Deltaeta=1.0} (blue open circles).


Measurement of charged jet suppression n Pb-Pb collisions at sqrt(sNN)=2.76TeV

The ALICE collaboration Abelev, B. ; Adam, J. ; Adamova, D. ; et al.
JHEP 03 (2014) 013, 2014.
Inspire Record 1263194 DOI 10.17182/hepdata.62723

A measurement of the transverse momentum spectra of jets in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76$ TeV is reported. Jets are reconstructed from charged particles using the anti-$k_{\rm T}$ jet algorithm with jet resolution parameters $R$ of $0.2$ and $0.3$ in pseudo-rapidity $|\eta|<0.5$. The transverse momentum $p_{\rm T}$ of charged particles is measured down to $0.15$ GeV/$c$ which gives access to the low $p_{\rm T}$ fragments of the jet. Jets found in heavy-ion collisions are corrected event-by-event for average background density and on an inclusive basis (via unfolding) for residual background fluctuations and detector effects. A strong suppression of jet production in central events with respect to peripheral events is observed. The suppression is found to be similar to the suppression of charged hadrons, which suggests that substantial energy is radiated at angles larger than the jet resolution parameter $R=0.3$ considered in the analysis. The fragmentation bias introduced by selecting jets with a high $p_{\rm T}$ leading particle, which rejects jets with a soft fragmentation pattern, has a similar effect on the jet yield for central and peripheral events. The ratio of jet spectra with $R=0.2$ and $R=0.3$ is found to be similar in Pb-Pb and simulated PYTHIA pp events, indicating no strong broadening of the radial jet structure in the reconstructed jets with $R<0.3$.

1 data table match query

Nuclear modification factor, constructed as the ratio of jet pT spectra in central and peripheral collisions normalized by the nuclear overlap functions, for charged jets with either R = 0.2 or R = 0.3 and a leading charged particle with pT > 5 GeV. Central collisions are defined to have centrality 10-30% and peripheral collisions are defined to have centrality 50-80%. The two systematic uncertainties correspond to the shape uncertainty and the correlated uncertainty.


Measurement of event shape and inclusive distributions at s**(1/2) = 130-GeV and 136-GeV.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 73 (1997) 229-242, 1997.
Inspire Record 424629 DOI 10.17182/hepdata.47715

Inclusive charged particle and event shape distributions are measured using 321 hadronic events collected with the DELPHI experiment at LEP at effective centre of mass energies of 130 to 136 GeV. These distributions are presented and compared to data at lower energies, in particular to the precise Z data. Fragmentation models describe the observed changes of the distributions well. The energy dependence of the means of the event shape variables can also be described using second order QCD plus power terms. A method independent of fragmentation model corrections is used to determine αs from the energy dependence of the mean thrust and heavy jet mass. It is measured to be: $$←pha _s(133 {⤪ GeV})={0.116}pm {0.007}_{exp-0.004theo}^{+0.005}$$ from the high energy data.

1 data table match query

5-jet rate for the Durham Algorithm.


pi+-, K+-, p and anti-p production in Z0 --> q anti-q, Z0 --> b anti-b, Z0 --> u anti-u, d anti-d, s anti-s.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 5 (1998) 585-620, 1998.
Inspire Record 473409 DOI 10.17182/hepdata.49385

The DELPHI experiment at LEP uses Ring Imaging Cherenkov detectors for particle identification. The good understanding of the RICH detectors allows the identification of charged pions, kaons and proto

1 data table match query

Differential cross section for P PBAR in Z0-->Q-QBAR events.


Measurement of the W -> lnu and Z/gamma* -> ll production cross sections in proton-proton collisions at sqrt(s) = 7 TeV with the ATLAS detector

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abdallah, J. ; et al.
JHEP 12 (2010) 060, 2010.
Inspire Record 872570 DOI 10.17182/hepdata.56744

First measurements of the W -> lnu and Z/gamma* -> ll (l = e, mu) production cross sections in proton-proton collisions at sqrt(s) = 7 TeV are presented using data recorded by the ATLAS experiment at the LHC. The results are based on 2250 W -> lnu and 179 Z/gamma* -> ll candidate events selected from a data set corresponding to an integrated luminosity of approximately 320 nb-1. The measured total W and Z/gamma*-boson production cross sections times the respective leptonic branching ratios for the combined electron and muon channels are $\stotW$ * BR(W -> lnu) = 9.96 +- 0.23(stat) +- 0.50(syst) +- 1.10(lumi) nb and $\stotZg$ * BR(Z/gamma* -> ll) = 0.82 +- 0.06(stat) +- 0.05(syst) +- 0.09(lumi) nb (within the invariant mass window 66 < m_ll < 116 GeV). The W/Z cross-section ratio is measured to be 11.7 +- 0.9(stat) +- 0.4(syst). In addition, measurements of the W+ and W- production cross sections and of the lepton charge asymmetry are reported. Theoretical predictions based on NNLO QCD calculations are found to agree with the measurements.

1 data table match query

Measured total cross-section ratio R_{W-/Z} = sigma (W- -> e- nubar) / sigma (Z/gamma^* -> e+ e-).


Harmonic decomposition of two-particle angular correlations in Pb-Pb collisions at sqrt(sNN) = 2.76 TeV

The ALICE collaboration Aamodt, K. ; Abelev, B. ; Abrahantes Quintana, A. ; et al.
Phys.Lett.B 708 (2012) 249-264, 2012.
Inspire Record 927105 DOI 10.17182/hepdata.58523

Angular correlations between unidentified charged trigger ($t$) and associated ($a$) particles are measured by the ALICE experiment in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76$ TeV for transverse momenta $0.25 < p_{T}^{t,\, a} < 15$ GeV/$c$, where $p_{T}^t > p_{T}^a$. The shapes of the pair correlation distributions are studied in a variety of collision centrality classes between 0 and 50% of the total hadronic cross section for particles in the pseudorapidity interval $|\eta| < 1.0$. Distributions in relative azimuth $\Delta\phi \equiv \phi^t - \phi^a$ are analyzed for $|\Delta\eta| \equiv |\eta^t - \eta^a| > 0.8$, and are referred to as "long-range correlations". Fourier components $V_{n\Delta} \equiv \langle \cos(n\Delta\phi)\rangle$ are extracted from the long-range azimuthal correlation functions. If particle pairs are correlated to one another through their individual correlation to a common symmetry plane, then the pair anisotropy $V_{n\Delta}(p_{T}^t, p_{T}^a)$ is fully described in terms of single-particle anisotropies $v_n (p_{T})$ as $V_{n\Delta}(p_{T}^t, p_{T}^a) = v_n(p_{T}^t) \, v_n(p_{T}^a)$. This expectation is tested for $1 \leq n \leq 5$ by applying a global fit of all $V_{n\Delta} (p_{T}^t, p_{T}^a)$ to obtain the best values $v_{n}\{GF\} (p_{T})$. It is found that for $2 \leq n \leq 5$, the fit agrees well with data up to $p_T^a \sim 3$-4 GeV/$c$, with a trend of increasing deviation as $p_{T}^t$ and $p_{T}^a$ are increased or as collisions become more peripheral. This suggests that no pair correlation harmonic can be described over the full $0.25 < p_{T} < 15$ GeV/$c$ range using a single $v_n(p_T)$ curve; such a description is however approximately possible for $2 \leq n \leq 5$ when $p_T^a < 4$ GeV/$c$. For the $n=1$ harmonic, however, a single $v_1(p_T$ curve is not obtained even within the reduced range $p_T^a < 4$ GeV/$c$.

1 data table match query

V3Delta coefficients as a function of the trigger particle PT for events in the centrality class 0-10% having the associated particle PT in the range 0.25-0.5 GeV. Note that in the paper the data are plotted multiplied by 100.


Charged-particle multiplicity distributions over a wide pseudorapidity range in proton-proton collisions at $\mathbf{\sqrt{s}=}$ 0.9, 7 and 8 TeV

The ALICE collaboration Acharya, S. ; Adamová, D. ; Adolfsson, J. ; et al.
Eur.Phys.J.C 77 (2017) 852, 2017.
Inspire Record 1614477 DOI 10.17182/hepdata.78802

We present the charged-particle multiplicity distributions over a wide pseudorapidity range ($-3.4<\eta<5.0$) for pp collisions at $\sqrt{s}=$ 0.9, 7, and 8 TeV at the LHC. Results are based on information from the Silicon Pixel Detector and the Forward Multiplicity Detector of ALICE, extending the pseudorapidity coverage of the earlier publications and the high-multiplicity reach. The measurements are compared to results from the CMS experiment and to PYTHIA, PHOJET and EPOS LHC event generators, as well as IP-Glasma calculations.

1 data table match query

Multiplicity distribution in the pseudorapidity region -2.4 to 2.4 for INEL collisions at a centre-of-mass energy of 7000 GeV.


Study of Jet Shapes in Inclusive Jet Production in pp Collisions at sqrt(s) = 7 TeV using the ATLAS Detector

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abdallah, J. ; et al.
Phys.Rev.D 83 (2011) 052003, 2011.
Inspire Record 882984 DOI 10.17182/hepdata.63511

Jet shapes have been measured in inclusive jet production in proton-proton collisions at sqrt(s) = 7 TeV using 3 pb^{-1} of data recorded by the ATLAS experiment at the LHC. Jets are reconstructed using the anti-kt algorithm with transverse momentum 30 GeV < pT < 600 GeV and rapidity in the region |y| < 2.8. The data are corrected for detector effects and compared to several leading-order QCD matrix elements plus parton shower Monte Carlo predictions, including different sets of parameters tuned to model fragmentation processes and underlying event contributions in the final state. The measured jets become narrower with increasing jet transverse momentum and the jet shapes present a moderate jet rapidity dependence. Within QCD, the data test a variety of perturbative and non-perturbative effects. In particular, the data show sensitivity to the details of the parton shower, fragmentation, and underlying event models in the Monte Carlo generators. For an appropriate choice of the parameters used in these models, the data are well described.

1 data table match query

Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 60 to 80 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.