Differential Cross-Section Measurements in $\pi^{-}$p Charge Exchange Scattering from 620 to 2730-MeV/c

Brown, Robert M. ; Clark, A.G. ; Davies, J.K. ; et al.
Nucl.Phys.B 117 (1976) 12-49, 1976.
Inspire Record 110001 DOI 10.17182/hepdata.8341

Results are presented of differential cross-section measurements for the reaction π − p→ π 0 n; π 0 → γγ at 22 incident pion momenta between 618 and 2724 MeV/ c . The results are in good agreement with those of other experiments. They represent the first comprehensive set of high statistics measurements of the π − p charge-exchange differential cross section at closely spaced momenta in the resonance region.

1 data table match query

No description provided.


Measurements of the Polarization Parameter p, and the Differential Cross-Section, for pi- p --> pi0 n in the Resonance Region

Brown, Robert M. ; Clark, A.G. ; Davies, J.K. ; et al.
75-89, 1976.
Inspire Record 116148 DOI 10.17182/hepdata.76441

None

1 data table match query

No description provided.


$\pi$-proton scattering at 516, 616, 710, 887, and 1085 MeV

Gbaed, F. ; Montanet, L. ; Lehmann, P. ; et al.
Nuovo Cim. 22 (1961) 193-198, 1961.
Inspire Record 1187691 DOI 10.17182/hepdata.37734

We present results on .~--p seattering at kinetic energies in the laboratory of 516, 616, 710, 887 and 1085MeV. The data were obtained by exposing a liquid hydrogen bubble chamber to a pion beam from the Saelay proton synchrotron Saturne. The chamber had a diameter of 20 cm and a depth of 10 cm. There was no magnetic field. Two cameras, 15 em apart, were situated at 84 cm from the center- of the chamber. A triple quadrnpole lens looking at an internal target, and a bending magnet, defined the beam, whose momentum spread was less than 2%. The value of the momentum was measured by the wire-orbit method and by time of flight technique, and the computed momentum spread was checked by means of a Cerenkov counter. The pictures were scanned twice for all pion interactions. 0nly those events with primaries at most 3 ~ off from the mean beam direction and with vertices inside a well defined fiducial volume, were considered. All not obviously inelastic events were measured and computed by means of a Mercury Ferranti computer. The elasticity of the event was established by eoplanarity and angular correlation of the outgoing tracks. We checked that no bias was introduced for elastic events with dip angles for the scattering plane of less than 80 ~ and with cosines of the scattering angles in the C.M.S. of less than 0.95. Figs. 1 to 5 show the angular distributions for elastic scattering, for all events with dip angles for the scattering plane less than 80 ~ . The solid curves represent a best fit to the differential cross section. The ratio of charged inelastic to elastic events, was obtained by comparing the number of inelastic scatterings to the areas under the solid curves which give the number of elastic seatterings.

5 data tables match query

No description provided.

No description provided.

No description provided.

More…

pi--p Elastic Scattering at 1.44 Bev

Chretien, M. ; Leitner, J. ; Samios, N.P. ; et al.
Phys.Rev. 108 (1957) 383-389, 1957.
Inspire Record 45962 DOI 10.17182/hepdata.26863

An investigation of π−+p elastic scattering, made in a liquid propane bubble chamber, is reported. Identification of events is made on the basis of kinematics. The problem of contamination by pion scattering from protons bound in carbon is considered in some detail; it is shown that the latter requires a correction of only 4±2.5% of the total number of events. The angular distribution is presented. It shows a large diffraction peak at small angles and an approximately isotropic plateau over the backward hemisphere. The forward peak is fitted to a black-sphere diffraction pattern with a radius of (1.08±0.06)×10−13 cm. The total elastic cross section is found to be σe=10.1±0.80 mb.

0 data tables match query

Large-Angle Pion-Proton Elastic Scattering at High Energies

Orear, J. ; Rubinstein, R. ; Scarl, D.B. ; et al.
Phys.Rev. 152 (1966) 1162-1170, 1966.
Inspire Record 50774 DOI 10.17182/hepdata.407

Differential cross sections for elastic π±−p scattering have been measured at lab momenta of 8 and 12 GeV/c in a momentum-transfer region corresponding to 1.2≤−t≤6 (GeV/c)2. Also, differential cross sections near 180° were measured for 4 and 8 GeV/c pions. At momentum transfers greater than −t=2 (GeV/c)2, the π−p cross sections drop much faster with increasing angle than the corresponding p−p cross sections. Also, in the region −t≃1.3 (GeV/c)2, there is structure in the π−p angular distribution but not in the p−p angular distribution. At −t≃3 (GeV/c)2, the drop in cross section appears to stop and from then on the angular distribution is consistent with isotropy. But in the angular region 170° to 180°, the cross sections have become much larger, and sharp backward peaks are observed. Information is given on the energy and charge dependences and widths of these backward peaks.

1 data table match query

No description provided.


Pi- p elastic scattering near 180 degrees from 2.15 to 6 gev/c

Meanley, E.S. ; Anthony, R.W. ; Coffin, C.T. ; et al.
Phys.Rev.D 6 (1972) 740-746, 1972.
Inspire Record 73970 DOI 10.17182/hepdata.3502

We present differential cross-section measurements for π−p elastic scattering in the backward direction, with −0.94>cosθc.m.>−1.0, for eleven beam momenta from 2.15 to 6 GeV/c.

1 data table match query

No description provided.


Two-body strange-particle final states in pi- p interactions at 4.5 and 6 gev/c

Crennell, D.J. ; Gordon, H.A. ; Lai, Kwan-Wu ; et al.
Phys.Rev.D 6 (1972) 1220-1254, 1972.
Inspire Record 73936 DOI 10.17182/hepdata.3601

Results on the following π−p reactions involving a hyperon are studied at 4.5 and 6.0 GeV/c from a high-statistics bubble-chamber experiment. (1) π−p→(Λ, Σ0)K0: Differential cross sections and hyperon polarizations are presented. Comparison with the line-reversed reactions K¯N→(Λ, Σ0)π indicates the failure of the predictions of K*(890) and K*(1420) exchange degeneracy. Effective trajectories for these two reactions are compared. Shrinkage is observed in K¯N→Λπ and not in π−p→ΛK0. (2) π−p→(Λ, Σ0)K*(890)0: Differential cross sections, hyperon polarizations, and K*(890)0 density-matrix elements are determined. ΛK*(890)0 decay correlations are found to impose strong constraints on the scattering amplitudes. The data indicate that both natural- and unnatural-parity exchanges contribute large, but opposite, Λ polarizations. This behavior cannot be explained by a simple exchange model utilizing K and the exchange-degenerate K*(890) and K*(1420) only. Additional trajectories or absorption effects are required to obtain the observed Λ-polarization effects. Comparison of ΛK*(890)0 and Σ0K*(890)0 indicates the greater importance of unnatural-parity exchange in the former reaction. We observe no evidence for deviations from isospin predictions in ΛK*(890)0 production where K*(890)0→K+π− and KS0π0. (3) π−p→ΛK*(1420)0 and ΛK*(1300)0: K*(1420)0 density-matrix elements satisfying positivity constraints are determined allowing for s-wave interference effects. Evidence of the existence of a narrow K*(1300)0→Kππ with a dominant K+ρ− decay mode is observed in the 4.5- and 6-GeV/c data. (4) Σ(1385), Λ(1405), Λ(1520) production: Differential cross sections for the quasi-two-body reactions π−p→Y0K0, where Y0 is Λ(1405), Λ(1520), or Σ(1385)0, are presented and found to have a very similar flat slope in the forward direction. Data for forward K+ scattering in the reaction π−p→Σ(1385)−K+ are presented and discussed. It is argued that this forward peak cannot be explained by kinematic reflection or an s-channel effect and therefore must be due to either two-particle exchange or a single exotic exchange in the t channel.

1 data table match query

No description provided.


Momentum dependence of the 180-degrees pi- p charge-exchange cross-section

Kistiakowsky, V. ; Feld, B.T. ; Triantis, F.A. ; et al.
Phys.Rev.D 6 (1972) 1882-1905, 1972.
Inspire Record 83145 DOI 10.17182/hepdata.3611

The π−+p→π0+n differential cross section at 180° has been measured for 52 values of π− momentum from 1.8 to 6.0 GeV/c using a constant-geometry detection system. The average statistical uncertainty is ∼5% and the systematic uncertainty is ∼10%. The details of the experiment and the data analysis are discussed. The data are compared with those of other experiments with which they are generally in agreement. One set of data disagrees with those presented here and a possible reason for this is discussed. A five-parameter fit of the predictions of a dual-resonance model to our data gave excellent agreement. The differential cross sections at 180° for π±p elastic scattering have been compiled and the moduli and relative phase of the T=12 and T=32 pion-nucleon s- and u-channel amplitudes (|A12|, |A32|, and cosδ) have a minimum at u=0.4 GeV/c and, in the s channel, a corresponding minimum at s=2.2 GeV/c.

1 data table match query

No description provided.


Pi+- proton elastic scattering at 180 degrees from 0.60 to 1.60 gev/c

Rothschild, R.E. ; Bowen, T. ; Caldwell, P.K. ; et al.
Phys.Rev.D 5 (1972) 499-505, 1972.
Inspire Record 74554 DOI 10.17182/hepdata.3523

The differential cross section for π±−p elastic scattering at 180° was measured from 0.572 to 1.628 GeVc using a double-arm scintillation-counter spectrometer with an angular acceptance θ* in the center-of-mass system defined by −1.00≤cosθ*≤−0.9992. The π+−p cross section exhibits a large dip at 0.737 GeVc and a broad peak centered near 1.31 GeVc. The π−−p cross section exhibits peaks at 0.69, 0.97, and 1.43 GeVc.

1 data table match query

No description provided.


pi + /- p Backward Scattering Between 1.5 and 3.0 BeV/c

Carroll, A.S. ; Fischer, J. ; Lundby, A. ; et al.
Phys.Rev.Lett. 20 (1968) 607-609, 1968.
Inspire Record 54465 DOI 10.17182/hepdata.897

None

1 data table match query

No description provided.