Exclusive Inelastic Final States in p anti-p Interactions at 49-GeV/c

Zissa, D.E. ; Barnes, V.E. ; Carmony, D.D. ; et al.
Phys.Rev.D 22 (1980) 2642, 1980.
Inspire Record 12972 DOI 10.17182/hepdata.24162

We have measured the total and subchannel cross sections for the reaction p¯p→p¯pπ+π− at 49 GeV/c. This reaction is dominated by two production mechanisms, diffraction and meson exchange. In addition, we have measured the total cross section for p¯p→p¯p2π+2π− and compared it to values at other momenta and with the corresponding pp interaction. Within the present statistics, no significant amount of exclusive annihilation is found into two, four, and six charged pions.

1 data table match query

No description provided.


PRISM Plot Analysis of the Reaction pi- p --> pi- pi- pi+ p at 13-GeV/c

Gaidos, J.A. ; Yen, W.L. ;
Phys.Rev.D 19 (1979) 22-42, 1979.
Inspire Record 135845 DOI 10.17182/hepdata.24296

Fourteen reaction channels contributing to the final state have been separated by a prism-plot analysis of π−p→π−π−π+p interactions at 13.2 GeV/c. The results of this study are presented in terms of partial and differential cross sections, invariant-mass and decay-angular distributions, and comparisons with other separation techniques for the various resonant states.

2 data tables match query

No description provided.

No description provided.


The (3 $\pi$) - Nucleon Collision in Coherent Production on Nuclei at 40-{GeV}/$c$

Bellini, G. ; Chernenko, L.P. ; Datsko, V.S. ; et al.
Nucl.Phys.B 199 (1982) 1-26, 1982.
Inspire Record 165248 DOI 10.17182/hepdata.49659

Coherent 3 π production on nine different nuclear targets has been studied using a 40 GeV/ c π − beam at the Serpukhov accelerator (CERN-Serpukhov experiment no. 5). The absorption in nuclear matter of the produced system has been measured, analysing the data on the different nuclear targets. Identica results are obtained from the differential cross sections and from the coherent nuclear cross sections. The 1 + waves show a very weak absorption, definitely smaller than 0 − and 2 − waves. No influence on the absorption comes from the spin-flip amplitudes, which have been found to be negligible in the coherent region.

1 data table match query

Data are extracted from graph by JINR data group.


A Study of the Structure of the Events With the Multiparticle Diffraction Dissociation in $K^- p$ Exclusive Reactions at 32-{GeV}/$c$

The French-Soviet & CERN-Soviet collaborations Arestov, Yu.I. ; Bogolyubsky, M.Yu. ; Levitsky, M.S. ; et al.
Sov.J.Nucl.Phys. 32 (1980) 353, 1980.
Inspire Record 144636 DOI 10.17182/hepdata.17869

None

1 data table match query

No description provided.


s CHANNEL AND t CHANNEL HELICITY CONSERVATION IN DIFFRACTIVE EVENTS OF THE REACTION K+ p ---> K+ pi+ pi- p AT 32-GeV/c

The CERN-Soviet collaboration Azhinenko, I.V. ; Barth, M. ; Belokopytov, Yu.A. ; et al.
Sov.J.Nucl.Phys. 32 (1980) 673, 1980.
Inspire Record 146409 DOI 10.17182/hepdata.41499

None

1 data table match query

Measurement of the diffractive cross-section in deep inelastic scattering using ZEUS 1994 data

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 6 (1999) 43-66, 1999.
Inspire Record 473108 DOI 10.17182/hepdata.44224

The DIS diffractive cross section, $d\sigma^{diff}_{\gamma^* p \to XN}/dM_X$, has been measured in the mass range $M_X < 15$ GeV for $\gamma^*p$ c.m. energies $60 < W < 200$ GeV and photon virtualities $Q^2 = 7$ to 140 GeV$^2$. For fixed $Q^2$ and $M_X$, the diffractive cross section rises rapidly with $W$, $d\sigma^{diff}_{\gamma^*p \to XN}(M_X,W,Q^2)/dM_X \propto W^{a^{diff}}$ with $a^{diff} = 0.507 \pm 0.034 (stat)^{+0.155}_{-0.046}(syst)$ corresponding to a $t$-averaged pomeron trajectory of $\bar{\alphapom} = 1.127 \pm 0.009 (stat)^{+0.039}_{-0.012} (syst)$ which is larger than $\bar{\alphapom}$ observed in hadron-hadron scattering. The $W$ dependence of the diffractive cross section is found to be the same as that of the total cross section for scattering of virtual photons on protons. The data are consistent with the assumption that the diffractive structure function $F^{D(3)}_2$ factorizes according to $\xpom F^{D(3)}_2 (\xpom,\beta,Q^2) = (x_0/ \xpom)^n F^{D(2)}_2(\beta,Q^2)$. They are also consistent with QCD based models which incorporate factorization breaking. The rise of $\xpom F^{D(3)}_2$ with decreasing $\xpom$ and the weak dependence of $F^{D(2)}_2$ on $Q^2$ suggest a substantial contribution from partonic interactions.

1 data table match query

Diffractive structure function F2(D3).


DIFFRACTION PROCESSES IN SIX BODY EXCLUSIVE K+ P REACTIONS AT 32-GEV/C. (IN RUSSIAN)

Azhinenko, I.V. ; Amaglobeli, N.S. ; Vorobev, A.P. ; et al.
Sov.J.Nucl.Phys. 46 (1987) 464, 1987.
Inspire Record 240069 DOI 10.17182/hepdata.10330

None

1 data table match query

No description provided.


Neutral Strange Particle Production in $K^+ p$ Interactions

The CERN-Soviet collaboration Ajinenko, I.V. ; Chliapnikov, P.V. ; Falaleev, V.P. ; et al.
Z.Phys.C 23 (1984) 307, 1984.
Inspire Record 193424 DOI 10.17182/hepdata.10722

The production properties ofKs0,\(\bar \Lambda\) andK+p interactions at 32 GeV/c are investigated using the final statistics of the experiment. We present total and semi-inclusive cross sections and aver-age multiplicities. Estimates are given of the diffractive dissociation contributions to total and differential cross sections. Thex-,pT−, and transverse mass dependence of inclusive and semi-inclusive distributions is discussed as well as properties of “prompt”Ks0's. The ratio of “prompt”K890+ (K8900) to “prompt”K0 cross sections is measured to be 1.03±0.12 (0.98±0.17). From a comparison of\(\bar \Lambda\) production inK±p interactions at 32 GeV/c, we estimate a strange sea-quark suppression of 0.26 ±0.02. The double differential cross sections ofKs0's is studied as a function of Feynman-x andpT2, and a Triple-Regge fit performed. The data are compared in detail to versions of the Lund-model for low-pT hadronic collisions.

1 data table match query

No description provided.


GENERAL FEATURES AND CLUSTER - LIKE PROPERTIES OF REACTION K+ p ---> K+ p 2 pi+ 2 pi- AT 32-GeV/c

Azhinenko, I.V. ; Belokopytov, Yu.A. ; Chliapnikov, P.V. ; et al.
Sov.J.Nucl.Phys. 34 (1981) 584, 1981.
Inspire Record 165495 DOI 10.17182/hepdata.10705

None

1 data table match query

SEE COMMENT ON TFP=T 3 (TABLE.1).


Study of deep inelastic inclusive and diffractive scattering with the ZEUS forward plug calorimeter.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Nucl.Phys.B 713 (2005) 3-80, 2005.
Inspire Record 675372 DOI 10.17182/hepdata.11816

Deep inelastic scattering and its diffractive component, ep -> e'gamma*p ->e'XN, have been studied at HERA with the ZEUS detector using an integrated luminosity of 4.2 pb-1. The measurement covers a wide range in the gamma*p c.m. energy W (37 - 245 GeV), photon virtuality Q2 (2.2 - 80 GeV2) and mass Mx. The diffractive cross section for Mx > 2 GeV rises strongly with W: the rise is steeper with increasing Q2. The latter observation excludes the description of diffractive deep inelastic scattering in terms of the exchange of a single Pomeron. The ratio of diffractive to total cross section is constant as a function of W, in contradiction to the expectation of Regge phenomenology combined with a naive extension of the optical theorem to gamma*p scattering. Above Mx of 8 GeV, the ratio is flat with Q2, indicating a leading-twist behaviour of the diffractive cross section. The data are also presented in terms of the diffractive structure function, F2D(3)(beta,xpom,Q2), of the proton. For fixed beta, the Q2 dependence of xpom F2D(3) changes with xpom in violation of Regge factorisation. For fixed xpom, xpom F2D(3) rises as beta -> 0, the rise accelerating with increasing Q2. These positive scaling violations suggest substantial contributions of perturbative effects in the diffractive DIS cross section.

1 data table match query

Cross section for the diffractive scattering process GAMMA* P --> DD X for a diffractive mass of 3.0 GeV and Q**2 = 2.7 GeV**2.