The Two jet invariant mass distribution at $\sqrt{s} = 1.8$ TeV

The CDF collaboration Abe, F. ; Amidei, D. ; Apollinari, G. ; et al.
Phys.Rev.D 41 (1990) 1722-1725, 1990.
Inspire Record 288745 DOI 10.17182/hepdata.23056

We present the dijet invariant-mass distribution in the region between 60 and 500 GeV, measured in 1.8-TeV p¯p collisions in the Collider Detector at Fermilab. Jets are restricted to the pseudorapidity interval |η|<0.7. Data are compared with QCD calculations; axigluons are excluded with 95% confidence in the region 120<MA<210 GeV for axigluon width ΓA=NαsMA6, with N=5.

0 data tables match query

Measurement of the inclusive jet cross-section in $\bar{p}p$ collisions at $\sqrt{s} = 1.8$ TeV

The CDF collaboration Abe, F. ; Amidei, D. ; Apollinari, G. ; et al.
Phys.Rev.Lett. 62 (1989) 613, 1989.
Inspire Record 267999 DOI 10.17182/hepdata.20032

Inclusive jet production at s=1.8 TeV has been measured in the CDF detector at the Fermilab Tevatron p¯p Collider. Jets with transverse energies (Et) up to 250 GeV have been observed. The Et dependence of the inclusive jet cross section is consistent with leading-order quantum-chromodynamic calculations, and comparison with lower-energy data shows deviations from scaling consistent with QCD. A lower limit of 700 GeV (95% confidence level) is placed on the quark compositeness scale parameter Λc associated with an effective contact interaction.

0 data tables match query

Measurement of the dijet mass distribution in $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV

The CDF collaboration Abe, F. ; Albrow, M. ; Amidei, D. ; et al.
Phys.Rev.D 48 (1993) 998-1008, 1993.
Inspire Record 353889 DOI 10.17182/hepdata.22573

The dijet invariant mass distribution has been measured in the region between 120 and 1000 GeV/c2, in 1.8-TeV pp¯ collisions. The data sample was collected with the Collider Detector at Fermilab (CDF). Data are compared to leading order (LO) and next-to-leading order (NLO) QCD calculations using two different clustering cone radii R in the jet definition. A quantitative test shows good agreement of data with the LO and NLO QCD predictions for a cone of R=1. The test using a cone of R=0.7 shows less agreement. The NLO calculation shows an improvement compared to LO in reproducing the shape of the spectrum for both radii, and approximately predicts the cone size dependence of the cross section.

0 data tables match query

Study of $t\bar{t}$ production $p\bar{p}$ collisions using total transverse energy

The CDF collaboration Abe, F. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.Lett. 75 (1995) 3997, 1995.
Inspire Record 396003 DOI 10.17182/hepdata.42358

We analyze a sample of W + jet events collected with the Collider Detector at Fermilab (CDF) in ppbar collisions at sqrt(s) = 1.8 TeV to study ttbar production. We employ a simple kinematical variable "H", defined as the scalar sum of the transverse energies of the lepton, neutrino and jets. For events with a W boson and four or more jets, the shape of the "H" distribution deviates by 3.8 standard deviations from that expected from known backgrounds to ttbar production. However this distribution agrees well with a linear combination of background and ttbar events, the agreement being best for a top mass of 180 GeV/c^2.

0 data tables match query

Search for the top quark decaying to a charged Higgs boson in $\bar{p}p$ collisions at $\sqrt{s} = 1.8$ TeV

The CDF collaboration Abe, F. ; Albrow, M.G. ; Amidei, D. ; et al.
Phys.Rev.Lett. 73 (1994) 2667-2671, 1994.
Inspire Record 383998 DOI 10.17182/hepdata.50929

We present the results of a search in p¯p collisions at s=1.8 TeV for the top quark decaying to a charged Higgs boson (H±). We search for dilepton final states from the decay chain tt¯→HH (or HW, or WW) + bb¯→ll+X. In a sample of 19.3 pb−1 collected during 1992-93 with the Collider Detector at Fermilab, we observe 2 events with a background estimation of 3.0 ± 1.0 events. Limits at 95% C.L. in the (Mtop,MH±) plane are presented. For the case Mtop<MW+Mb, we exclude at 95% C.L. the entire (Mtop,MH±) plane for the branching ratio B(H→τν) larger than 75%. We also interpret the results in terms of the parameter tan β of two-Higgs-doublet models.

0 data tables match query

Properties of high mass multi - jet events at the Fermilab $p\bar{p}$ collider

The CDF collaboration Abe, F. ; Albrow, M.G. ; Amendolia, S.R. ; et al.
Phys.Rev.Lett. 75 (1995) 608-612, 1995.
Inspire Record 393345 DOI 10.17182/hepdata.52833

The properties of two-, three-, four-, five-, and six-jet events with multijet masses >600 GeV /c2 are compared with QCD predictions. The shapes of the multijet-mass and leading-jet-angular distributions are approximately independent of jet multiplicity and are well described by the NJETS matrix element calculation and the HERWIG parton shower Monte Carlo predictions. The observed jet transverse momentum distributions for three- and four-jet events discriminate between the matrix element and parton shower predictions, the data favoring the matrix element calculation.

0 data tables match query

Jet pseudorapidity distribution in direct photon events in $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV

The CDF collaboration Abe, F. ; Albrow, M.G. ; Amendolia, S.R. ; et al.
Phys.Rev.D 57 (1998) 1359-1365, 1998.
Inspire Record 453369 DOI 10.17182/hepdata.54263

We present the first measurement of the jet pseudorapidity distribution in direct photon events from a sample of pp¯ collisions at s=1.8TeV, recorded with the Collider Detector at Fermilab. Quantum chromodynamics (QCD) predicts that these events are primarily from hard quark-gluon Compton scattering, qg→qγ, with the final state quark producing the jet of hadrons. The jet pseudorapidity distribution in this model is sensitive to parton momentum fractions between 0.015 and 0.15. We find that the shape of the measured pseudorapidity distribution agrees well with next-to-leading order QCD calculations.

0 data tables match query

Further properties of high mass multi - jet events at the Fermilab proton - anti-proton collider

The CDF collaboration Abe, F. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.D 54 (1996) 4221-4233, 1996.
Inspire Record 418504 DOI 10.17182/hepdata.52862

The properties of high-mass multijet events produced at the Fermilab proton-antiproton collider are compared with leading order QCD matrix element predictions, QCD parton shower Monte Carlo predictions, and the predictions from a model in which events are distributed uniformly over the available multibody phase-space. Multijet distributions corresponding to (4N-4) variables that span the N-body parameter space are found to be well described by the QCD calculations for inclusive three-jet, four-jet, and five-jet events. The agreement between data, QCD Matrix Element calculations, and QCD parton shower Monte Carlo predictions suggests that 2 -> 2 scattering plus gluon radiation provides a good first approximation to the full LO QCD matrix element for events with three, four, or even five jets in the final state.

0 data tables match query

Measurement of dijet angular distributions at CDF

The CDF collaboration Abe, F. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.Lett. 77 (1996) 5336-5341, 1996.
Inspire Record 423414 DOI 10.17182/hepdata.54980

We have used 106 pb~-1 of data collected in proton-antiproton collisions at sqrt(s)=1.8 TeV by the Collider Detector at Fermilab to measure jet angular distributions in events with two jets in the final state. The angular distributions agree with next to leading order (NLO) predictions of Quantum Chromodynamics (QCD) in all dijet invariant mass regions. The data exclude at 95% confidence level (CL) a model of quark substructure in which only up and down quarks are composite and the contact interaction scale is Lambda_ud(+) < 1.6 TeV or Lambda_ud(-) < 1.4 TeV. For a model in which all quarks are composite the excluded regions are Lambda(+) < 1.8 TeV and Lambda(-) < 1. 6 TeV.

0 data tables match query

Inclusive jet cross section in ${\bar p p}$ collisions at $\sqrt{s}=1.8$ TeV

The CDF collaboration Abe, F. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.Lett. 77 (1996) 438-443, 1996.
Inspire Record 415602 DOI 10.17182/hepdata.42298

The inclusive jet differential cross section has been measured for jet transverse energies, $E_T$, from 15 to 440 GeV, in the pseudorapidity region 0.1$\leq | \eta| \leq $0.7. The results are based on 19.5 pb$~{-1}$ of data collected by the CDF collaboration at the Fermilab Tevatron collider. The data are compared with QCD predictions for various sets of parton distribution functions. The cross section for jets with $E_T>200$\ GeV is significantly higher than current predictions based on O($\alpha_s~3$) perturbative QCD calculations. Various possible explanations for the high-$E_T$\ excess are discussed.

0 data tables match query