Production of chi charmonium via 300-GeV/c pion and proton interactions on a lithium target

The E705 collaboration Antoniazzi, L. ; Arenton, M. ; Cao, Z. ; et al.
Phys.Rev.D 49 (1994) 543-546, 1994.
Inspire Record 354743 DOI 10.17182/hepdata.42541

We present a measurement and comparison of the χc1 and χc2 production cross sections determined from interactions of 300-GeV/c π± and p with a Li target. We find χc1χc2 production ratios of 0.52−0.27+0.57 and 0.08−0.15+0.25 from reactions induced by π± and p, respectively.

0 data tables match query

A Measurement of $J / \psi$ and $\psi^{\prime}$ Production in 300-GeV/c Proton, Antiproton and $\pi^{\pm}$ Nucleon Interactions

The E705 collaboration Antoniazzi, L. ; Arenton, M. ; Cao, Z. ; et al.
Phys.Rev.D 46 (1992) 4828-4835, 1992.
Inspire Record 338055 DOI 10.17182/hepdata.22667

Hadroproduction of the Jψ and ψ′ states has been studied in 300-GeV/c proton, antiproton, and π±Li interactions. Both total and differential cross sections in xF and pT have been measured for the Jψ for the π±, proton, and antiproton interactions. The ratio of ψ′ to Jψ production has been determined for the four types of beam particles.

0 data tables match query

A Search for electron neutrino appearance at the Delta m**2 ~ 1- eV**2 scale

The MiniBooNE collaboration Aguilar-Arevalo, A.A. ; Bazarko, A.O. ; Brice, Stephen J. ; et al.
Phys.Rev.Lett. 98 (2007) 231801, 2007.
Inspire Record 748380 DOI 10.17182/hepdata.113834

The MiniBooNE Collaboration reports first results of a search for $\nu_e$ appearance in a $\nu_\mu$ beam. With two largely independent analyses, we observe no significant excess of events above background for reconstructed neutrino energies above 475 MeV. The data are consistent with no oscillations within a two neutrino appearance-only oscillation model.

0 data tables match query

Measurement of the Multiple-Muon Charge Ratio in the MINOS Far Detector

The MINOS collaboration Adamson, P. ; Anghel, I. ; Aurisano, A. ; et al.
Phys.Rev.D 93 (2016) 052017, 2016.
Inspire Record 1419065 DOI 10.17182/hepdata.77051

The charge ratio, $R_\mu = N_{\mu^+}/N_{\mu^-}$, for cosmogenic multiple-muon events observed at an under- ground depth of 2070 mwe has been measured using the magnetized MINOS Far Detector. The multiple-muon events, recorded nearly continuously from August 2003 until April 2012, comprise two independent data sets imaged with opposite magnetic field polarities, the comparison of which allows the systematic uncertainties of the measurement to be minimized. The multiple-muon charge ratio is determined to be $R_\mu = 1.104 \pm 0.006 {\rm \,(stat.)} ^{+0.009}_{-0.010} {\rm \,(syst.)} $. This measurement complements previous determinations of single-muon and multiple-muon charge ratios at underground sites and serves to constrain models of cosmic ray interactions at TeV energies.

0 data tables match query

Elastic Scattering Measurement of the Negative Pion Radius

Dally, E.B. ; Hauptman, J.M. ; Kubic, J. ; et al.
Phys.Rev.Lett. 48 (1982) 375-378, 1982.
Inspire Record 177923 DOI 10.17182/hepdata.20609

A new measurement of the elastic scattering of 250-GeV/c negative pions by electrons provides form-factor results from 0.0368<q2<0.0940 (GeV/c)2. These measurements determine the mean square pion radius to be 〈rπ2〉=0.439±0.030 fm2 or 〈rπ2〉12=0.663±0.023 fm. Comparisons are made with previous elastic-scattering experiments as well as with results obtained from electroproduction experiments, e+e− annihilation experiments, and phenomenological analyses.

0 data tables match query

First Measurement of the Muon Anti-Neutrino Double-Differential Charged Current Quasi-Elastic Cross Section

The MiniBooNE collaboration Aguilar-Arevalo, A.A. ; Brown, B.C. ; Bugel, L. ; et al.
Phys.Rev.D 88 (2013) 032001, 2013.
Inspire Record 1216885 DOI 10.17182/hepdata.82211

The largest sample ever recorded of $\numub$ charged-current quasi-elastic (CCQE, $\numub + p \to \mup + n$) candidate events is used to produce the minimally model-dependent, flux-integrated double-differential cross section $\frac{d^{2}\sigma}{dT_\mu d\uz}$ for $\numub$ incident on mineral oil. This measurement exploits the unprecedented statistics of the MiniBooNE anti-neutrino mode sample and provides the most complete information of this process to date. Also given to facilitate historical comparisons are the flux-unfolded total cross section $\sigma(E_\nu)$ and single-differential cross section $\frac{d\sigma}{d\qsq}$ on both mineral oil and on carbon by subtracting the $\numub$ CCQE events on hydrogen. The observed cross section is somewhat higher than the predicted cross section from a model assuming independently-acting nucleons in carbon with canonical form factor values. The shape of the data are also discrepant with this model. These results have implications for intra-nuclear processes and can help constrain signal and background processes for future neutrino oscillation measurements.

0 data tables match query

Differential cross sections of J/psi and psi' in 800-GeV/c p Si interactions.

The E-771 collaboration Alexopoulos, T. ; Durandet, C. ; Erwin, A.R. ; et al.
Phys.Rev.D 55 (1997) 3927-3932, 1997.
Inspire Record 446872 DOI 10.17182/hepdata.22271

We present the xF and pT differential cross sections of J/ψ and ψ′, respectively, in the ranges −0.05<xF<0.25 and pT<3.5 GeV/c. The data samples are constituted by about 12 000 J/ψ and 200 ψ′ produced in proton-silicon interactions at 800 GeV/c and decaying into opposite sign muons. The xF and pT distributions are compared with recent results from experiments E789 at the same energy and to leading order QCD predictions using the MRS D0 parametrization for the parton structure function. The measured shapes of the differential cross sections, except for the dσ/dxF at small xF, agree very well with the prediction, even though their value is quite a bit larger than the prediction. We also present the cosθ differential cross section of the J/ψ which indicates unpolarized production in contrast with color octet models predictions.

0 data tables match query

Hadroproduction of the chi1 and chi2 states of charmonium in 800-GeV/c proton silicon interactions.

The E771 collaboration Alexopoulos, T. ; Antoniazzi, L. ; Arenton, M. ; et al.
Phys.Rev.D 62 (2000) 032006, 2000.
Inspire Record 504991 DOI 10.17182/hepdata.41516

The cross sections for the hadroproduction of the Chi1 and Chi2 states of charmonium in proton-silicon collisions at sqrt{s}=38.8 GeV have been measured in Fermilab fixed target Experiment 771. The Chi states were observed via their radiative decay to J/psi+gamma, where the photon converted to e+e- in the material of the spectrometer. The measured values for the Chi1 and Chi2 cross sections for x_F>0 are 263+-69(stat)+-32(syst) and 498+-143(stat)+-67(syst) nb per nucleon respectively. The resulting sigma(Chi1}/sigma(Chi2) ratio of 0.53+-0.20(stat)+-0.07(syst), although somewhat larger than most theoretical expectations, can be accomodated by the latest theoretical estimates.

0 data tables match query

Measurement of J / psi, psi-prime and upsilon total cross-sections in 800-GeV/c p - Si interactions

The E771 collaboration Alexopoulos, T ; Antoniazzi, L ; Arenton, M ; et al.
Phys.Lett.B 374 (1996) 271-276, 1996.
Inspire Record 400873 DOI 10.17182/hepdata.42316

We report on the analysis of Charmonium and Bottomium states produced in p-Si interactions at s =38.7 GeV . The data have been collected with the open geometry spectrometer of the E771 Experiment at the FNAL High Intensity Lab. J ψ , ψ′ and γ total cross sections as well as the ratio B(ψ′ → μμ)σ(ψ′) (B( J ψ → μμ)σ( J ψ )) have been measured. Results are compared with theoretical predictions and with results at other energies.

0 data tables match query

Updated MiniBooNE Neutrino Oscillation Results with Increased Data and New Background Studies

The MiniBooNE collaboration Aguilar-Arevalo, A.A. ; Brown, B.C. ; Conrad, J.M. ; et al.
Phys.Rev.D 103 (2021) 052002, 2021.
Inspire Record 1804293 DOI 10.17182/hepdata.114365

The MiniBooNE experiment at Fermilab reports a total excess of $638.0 \pm 132.8$ electron-like events ($4.8 \sigma$) from a data sample corresponding to $18.75 \times 10^{20}$ protons-on-target in neutrino mode, which is a 46\% increase in the data sample with respect to previously published results, and $11.27 \times 10^{20}$ protons-on-target in antineutrino mode. The additional statistics allow several studies to address questions on the source of the excess. First, we provide two-dimensional plots in visible energy and cosine of the angle of the outgoing lepton, which can provide valuable input to models for the event excess. Second, we test whether the excess may arise from photons that enter the detector from external events or photons exiting the detector from $\pi^0$ decays in two model independent ways. Beam timing information shows that almost all of the excess is in time with neutrinos that interact in the detector. The radius distribution shows that the excess is distributed throughout the volume, while tighter cuts on the fiducal volume increase the significance of the excess. We conclude that models of the event excess based on entering and exiting photons are disfavored.

0 data tables match query

Search for Neutrino-Induced Neutral Current $\Delta$ Radiative Decay in MicroBooNE and a First Test of the MiniBooNE Low Energy Excess Under a Single-Photon Hypothesis

The MicroBooNE collaboration Abratenko, P. ; An, R. ; Anthony, J. ; et al.
Phys.Rev.Lett. 128 (2022) 111801, 2022.
Inspire Record 1937333 DOI 10.17182/hepdata.114860

We report results from a search for neutrino-induced neutral current (NC) resonant $\Delta$(1232) baryon production followed by $\Delta$ radiative decay, with a $\langle0.8\rangle$~GeV neutrino beam. Data corresponding to MicroBooNE's first three years of operations (6.80$\times$10$^{20}$ protons on target) are used to select single-photon events with one or zero protons and without charged leptons in the final state ($1\gamma1p$ and $1\gamma0p$, respectively). The background is constrained via an in-situ high-purity measurement of NC $\pi^0$ events, made possible via dedicated $2\gamma1p$ and $2\gamma0p$ selections. A total of 16 and 153 events are observed for the $1\gamma1p$ and $1\gamma0p$ selections, respectively, compared to a constrained background prediction of $20.5 \pm 3.65 \text{(sys.)} $ and $145.1 \pm 13.8 \text{(sys.)} $ events. The data lead to a bound on an anomalous enhancement of the normalization of NC $\Delta$ radiative decay of less than $2.3$ times the predicted nominal rate for this process at the 90% confidence level (CL). The measurement disfavors a candidate photon interpretation of the MiniBooNE low-energy excess as a factor of $3.18$ times the nominal NC $\Delta$ radiative decay rate at the 94.8% CL, in favor of the nominal prediction, and represents a greater than $50$-fold improvement over the world's best limit on single-photon production in NC interactions in the sub-GeV neutrino energy range

0 data tables match query

Search for an anomalous excess of charged-current quasi-elastic $\nu_e$ interactions with the MicroBooNE experiment using Deep-Learning-based reconstruction

The MicroBooNE collaboration Abratenko, P. ; An, R. ; Anthony, J. ; et al.
Phys.Rev.D 105 (2022) 112003, 2022.
Inspire Record 1953568 DOI 10.17182/hepdata.114859

We present a measurement of the $\nu_e$-interaction rate in the MicroBooNE detector that addresses the observed MiniBooNE anomalous low-energy excess (LEE). The approach taken isolates neutrino interactions consistent with the kinematics of charged-current quasi-elastic (CCQE) events. The topology of such signal events has a final state with 1 electron, 1 proton, and 0 mesons ($1e1p$). Multiple novel techniques are employed to identify a $1e1p$ final state, including particle identification that use two methods of deep-learning-based image identification, and event isolation using a boosted decision-tree ensemble trained to recognize two-body scattering kinematics. This analysis selects 25 $\nu_e$-candidate events in the reconstructed neutrino energy range of 200--1200 MeV, while $29.0 \pm 1.9_\text{(sys)} \pm 5.4_\text{(stat)}$ are predicted when using $\nu_\mu$ CCQE interactions as a constraint. We use a simplified model to translate the MiniBooNE LEE observation into a prediction for a $\nu_e$ signal in MicroBooNE. A $\Delta \chi^2$ test statistic, based on the combined Neyman--Pearson $\chi^2$ formalism, is used to define frequentist confidence intervals for the LEE signal strength. Using this technique, in the case of no LEE signal, we expect this analysis to exclude a normalization factor of 0.75 (0.98) times the median MiniBooNE LEE signal strength at 90% ($2\sigma$) confidence level, while the MicroBooNE data yield an exclusion of 0.25 (0.38) times the median MiniBooNE LEE signal strength at 90% ($2\sigma$) confidence

0 data tables match query

First Measurement of Energy-dependent Inclusive Muon Neutrino Charged-Current Cross Sections on Argon with the MicroBooNE Detector

The MicroBooNE collaboration Abratenko, P. ; An, R. ; Anthony, J. ; et al.
Phys.Rev.Lett. 128 (2022) 151801, 2022.
Inspire Record 1954078 DOI 10.17182/hepdata.114863

We report a measurement of the energy-dependent total charged-current cross section $\sigma\left(E_\nu\right)$ for inclusive muon neutrinos scattering on argon, as well as measurements of flux-averaged differential cross sections as a function of muon energy and hadronic energy transfer ($\nu$). Data corresponding to 5.3$\times$10$^{19}$ protons on target of exposure were collected using the MicroBooNE liquid argon time projection chamber located in the Fermilab Booster Neutrino Beam with a mean neutrino energy of approximately 0.8~GeV. The mapping between the true neutrino energy $E_\nu$ and reconstructed neutrino energy $E^{rec}_\nu$ and between the energy transfer $\nu$ and reconstructed hadronic energy $E^{rec}_{had}$ are validated by comparing the data and Monte Carlo (MC) predictions. In particular, the modeling of the missing hadronic energy and its associated uncertainties are verified by a new method that compares the $E^{rec}_{had}$ distributions between data and an MC prediction after constraining the reconstructed muon kinematic distributions, energy and polar angle, to those of data. The success of this validation gives confidence that the missing energy in the MicroBooNE detector is well-modeled and underpins first-time measurements of both the total cross section $\sigma\left(E_\nu\right)$ and the differential cross section $d\sigma/d\nu$ on argon.

0 data tables match query

Version 3
Search for an anomalous excess of inclusive charged-current $\nu_e$ interactions in the MicroBooNE experiment using Wire-Cell reconstruction

The MicroBooNE collaboration Abratenko, P. ; An, R. ; Anthony, J. ; et al.
Phys.Rev.D 105 (2022) 112005, 2022.
Inspire Record 1953539 DOI 10.17182/hepdata.114862

We report a search for an anomalous excess of inclusive charged-current (CC) $\nu_e$ interactions using the Wire-Cell event reconstruction package in the MicroBooNE experiment, which is motivated by the previous observation of a low-energy excess (LEE) of electromagnetic events from the MiniBooNE experiment. With a single liquid argon time projection chamber detector, the measurements of $\nu_{\mu}$ CC interactions as well as $\pi^0$ interactions are used to constrain signal and background predictions of $\nu_e$ CC interactions. A data set collected from February 2016 to July 2018 corresponding to an exposure of 6.369 $\times$ 10$^{20}$ protons on target from the Booster Neutrino Beam at FNAL is analyzed. With $x$ representing an overall normalization factor and referred to as the LEE strength parameter, we select 56 fully contained $\nu_e$ CC candidates while expecting 69.6 $\pm$ 8.0 (stat.) $\pm$ 5.0 (sys.) and 103.8 $\pm$ 9.0 (stat.) $\pm$ 7.4 (sys.) candidates after constraints for the absence (eLEE$_{x=0}$) of the median signal strength derived from the MiniBooNE observation and the presence (eLEE$_{x=1}$) of that signal strength, respectively. Under a nested hypothesis test using both rate and shape information in all available channels, the best-fit $x$ is determined to be 0 (eLEE$_{x=0}$) with a 95.5% confidence level upper limit of $x$ at 0.502. Under a simple-vs-simple hypotheses test, the eLEE$_{x=1}$ hypothesis is rejected at 3.75$\sigma$, while the eLEE$_{x=0}$ hypothesis is shown to be consistent with the observation at 0.45$\sigma$. In the context of the eLEE model, the estimated 68.3% confidence interval of the $\nu_e$ hypothesis to explain the LEE observed in the MiniBooNE experiment is disfavored at a significance level of more than 2.6$\sigma$ (3.0$\sigma$) considering MiniBooNE's full (statistical) uncertainties.

0 data tables match query

Atomic mass dependence of Xi- and anti-Xi+ production in central 250-GeV pi- nucleon interactions.

The Fermilab E769 collaboration Alves, G.A. ; Amato, S. ; Anjos, J.C. ; et al.
Phys.Rev.D 56 (1997) 6003-6005, 1997.
Inspire Record 441682 DOI 10.17182/hepdata.42209

We present the first measurement of the atomic mass dependence of central \Xi~- and \overline{\Xi}~+ production. It is measured using a sample of 22,459 \Xi~-'s and \overline{\Xi}~+'s produced in collisions between a 250 GeV \pi~- beam and targets of beryllium, aluminum, copper, and tungsten. The relative cross sections are fit to the two parameter function \sigma_0 A~\alpha, where A is the atomic mass. We measure \alpha = 0.924+-0.020+-0.025, for Feynman-x in the range -0.09 < x_F < 0.15.

0 data tables match query

Transverse momentum cross section of $e^+e^-$ pairs in the $Z$-boson region from $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV

The CDF collaboration Aaltonen, T. ; Alvarez Gonzalez, B. ; Amerio, S. ; et al.
Phys.Rev.D 86 (2012) 052010, 2012.
Inspire Record 1124333 DOI 10.17182/hepdata.60522

The transverse momentum cross section of $e^+e^-$ pairs in the $Z$-boson mass region of 66-116 GeV/$c^2$ is precisely measured using Run II data corresponding to 2.1 fb$^{-1}$ of integrated luminosity recorded by the Collider Detector at Fermilab. The cross section is compared with quantum chromodynamic calculations. One is a fixed-order perturbative calculation at ${\cal O}(\alpha_s^2)$, and the other combines perturbative predictions at high transverse momentum with the gluon resummation formalism at low transverse momentum. Comparisons of the measurement with calculations show reasonable agreement. The measurement is of sufficient precision to allow refinements in the understanding of the transverse momentum distribution.

0 data tables match query

Measurement of the Differential Cross Section $d{\sigma}/d(\cos {\theta}t)$ for Top-Quark Pair Production in $p-\bar{p}$ Collisions at $\sqrt{s} = 1.96$ TeV

The CDF collaboration Aaltonen, T. ; Amerio, S. ; Amidei, D. ; et al.
Phys.Rev.Lett. 111 (2013) 182002, 2013.
Inspire Record 1238100 DOI 10.17182/hepdata.64392

We report a measurement of the differential cross section, d{\sigma}/d(cos {\theta}t), for top-quark-pair production as a function of the top-quark production angle in proton-antiproton collisions at sqrt{s} = 1.96 TeV. This measurement is performed using data collected with the CDF II detector at the Tevatron, corresponding to an integrated luminosity of 9.4/fb. We employ the Legendre polynomials to characterize the shape of the differential cross section at the parton level. The observed Legendre coefficients are in good agreement with the prediction of the next-to-leading-order standard-model calculation, with the exception of an excess linear-term coefficient, a1 = 0.40 +- 0.12, compared to the standard-model prediction of a1 = 0.15^{+0.07}_{-0.03}.

0 data tables match query

Measurement of the Cross Section for Direct-Photon Production in Association with a Heavy Quark in $p\bar{p}$ Collisions at $\sqrt{s}$ = 1.96 TeV

The CDF collaboration Aaltonen, T. ; Amerio, S. ; Amidei, D. ; et al.
Phys.Rev.Lett. 111 (2013) 042003, 2013.
Inspire Record 1225278 DOI 10.17182/hepdata.61735

We report on a measurement of the cross section for direct-photon production in association with a heavy quark using the full data set of $\sqrt{s}=1.96$ TeV proton-antiproton collisions corresponding to 9.1 fb$^{-1}$ of integrated luminosity collected by the CDF II detector at the Fermilab Tevatron. The measurements are performed as a function of the photon transverse momentum, covering photon transverse momentum between 30 and 300 GeV, photon rapidities $|y^{\gamma}|<1.0$, heavy-quark-jet transverse momentum $p_{T}^{jet}>20$ GeV, and jet rapidities $|y^{jet}|<1.5$. The results are compared with several theoretical predictions.

0 data tables match query

Observation of the top quark

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 74 (1995) 2632-2637, 1995.
Inspire Record 393099 DOI 10.17182/hepdata.42452

The DO collaboration reports on a search for the Standard Model top quark in pbar-p collisions at Sqrt(s)=1.8TeV at the Fermilab Tevatron, with an integrated luminosity of approximately 50pb-1. We have searched for t-tbar production in the dilepton and single-lepton decay channels, with and without tagging of b-quark jets. We observed 17 events with an expected background of 3.8+/-0.6 events. The probability for an upward fluctuation of the background to produce the observed signal is 2.0E-6 (equivalent to 4.6 standard deviations). The kinematic properties of the excess events are consistent with top quark decay. We conclude that we have observed the top quark and measure its mass to be 199~+19_21 (stat.)+/- 22 (syst.)GeV/c**2 and its production cross section to be 6.4 +/- 2.2 pb.

0 data tables match query

Measurement of the cross section for prompt isolated diphoton production using the full CDF Run II data sample

The CDF collaboration Aaltonen, T. ; Amerio, S. ; Amidei, D. ; et al.
Phys.Rev.Lett. 110 (2013) 101801, 2013.
Inspire Record 1207879 DOI 10.17182/hepdata.66020

This Letter reports a measurement of the cross section for producing pairs of central prompt isolated photons in proton-antiproton collisions at a total energy of 1.96 TeV using data corresponding to 9.5/fb integrated luminosity collected with the CDF II detector at the Fermilab Tevatron. The measured differential cross section is compared to three calculations derived from the theory of strong interactions. These include a prediction based on a leading order matrix element calculation merged with parton shower, a next-to-leading order, and a next-to-next-to-leading order calculation. The first and last calculations reproduce most aspects of the data, thus showing the importance of higher-order contributions for understanding the theory of strong interaction and improving measurements of the Higgs boson and searches for new phenomena in diphoton final states.

0 data tables match query

Asymmetries in the production of Lambda0 in 250-GeV/c pi+-, K+- and p nucleon interactions.

The E769 collaboration Alves, G.A ; Amato, S ; Anjos, J.C ; et al.
Phys.Lett.B 559 (2003) 179-186, 2003.
Inspire Record 615414 DOI 10.17182/hepdata.41928

Using data from Fermilab fixed-target experiment E769, we have measured particle-antiparticle production asymmetries for Lambda0 hyperons in 250 GeV/c pi+-, K+- and p -- nucleon interactions. The asymmetries are measured as functions of Feynman-x (x_F) and p_t^2 over the ranges -0.12<=x_F<=0.12 and 0<=p_t^2<=3 (GeV/c)^2 (for positive beam) and -0.12<=x_F<=0.4 and 0<=p_t^2<=10 (GeV/c)^2 (for negative beam). We find substantial asymmetries, even at x_F around zero. We also observe leading-particle-type asymmetries. These latter effects are qualitatively as expected from valence-quark content of the target and variety of projectiles studied.

0 data tables match query

Dijet production by color-singlet exchange at the Fermilab Tevatron

The CDF collaboration Abe, F. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.Lett. 80 (1998) 1156-1161, 1998.
Inspire Record 447619 DOI 10.17182/hepdata.42182

We report a new measurement of dijet production by color-singlet exchange in pp¯ collisions at s=1.8TeV at the Fermilab Tevatron. In a sample of events with two jets of transverse energy ETjet>20GeV, pseudorapidity in the range 1.8<|ηjet|<3.5, and η1η2<0, we find that a fraction R=[1.13±0.12(stat)±0.11(syst)]% has a pseudorapidity gap within |η|<1 between the jets that can be attributed to color-singlet exchnage. The fraction R shows no significant dependence on ETjet or on the pseudorapidity separation between the jets.

0 data tables match query

Search for first generation leptoquark pair production in p anti-p collisions at S**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.Lett. 79 (1997) 4327-4332, 1997.
Inspire Record 447250 DOI 10.17182/hepdata.42184

We present a search for first generation leptoquark with 110pb^1 of data collected with the CDF detector. We set 95% C.L. cross section limits as a function of the leptoquark mass.

0 data tables match query

Measurement of the top quark pair production cross-section in p anti-p collisions using multijet final states

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.D 60 (1999) 012001, 1999.
Inspire Record 475565 DOI 10.17182/hepdata.42156

We have studied tbar-t production using multijet final states in pbar-p collisions at a center-of-mass energy of 1.8 TeV, with an integrated luminosity of 110.3 pb(-1). Each of the top quarks with these final states decays exclusively to a bottom quark and a W boson, with the W bosons decaying into quark-antiquark pairs. The analysis has been optimized using neural networks to achieve the smallest expected fractional uncertainty on the tbar-t production cross section, and yields a cross section of 7.1 +/- 2.8(stat.) +/- 1.5(syst.) pb, assuming a top quark mass of 172.1 GeV/c^(2). Combining this result with previous D0 measurements, where one or both of the W bosons decay leptonically, gives a tbar t production cross section of 5.9 +/- 1.2(stat) +/- 1.1(syst) pb.

0 data tables match query

The Underlying event in hard interactions at the Tevatron anti-p p collider

The CDF collaboration Acosta, D. ; Affolder, T. ; Albrow, M.G. ; et al.
Phys.Rev.D 70 (2004) 072002, 2004.
Inspire Record 647490 DOI 10.17182/hepdata.22135

For comparison of inclusive jet cross sections measured at hadron-hadron colliders to next-to-leading order (NLO) parton-level calculations, the energy deposited in the jet cone by spectator parton interactions must first be subtracted. The assumption made at the Tevatron is that the spectator parton interaction energy is similar to the ambient level measured in minimum bias events. In this paper, we test this assumption by measuring the ambient charged track momentum in events containing large transverse energy jets at $\sqrt{s}=1800$ GeV and $\sqrt{s}=630$ GeV and comparing this ambient momentum with that observed both in minimum bias events and with that predicted by two Monte Carlo models. Two cones in $\eta$--$\phi$ space are defined, at the same pseudo-rapidity, $\eta$, as the jet with the highest transverse energy ($E_T^{(1)}$), and at $\pm 90^o$ in the azimuthal direction, $\phi$. The total charged track momentum inside each of the two cones is measured. The minimum momentum in the two cones is almost independent of $E_T^{(1)}$ and is similar to the momentum observed in minimum bias events, whereas the maximum momentum increases roughly linearly with the jet $E_T^{(1)}$ over most of the measured range. This study will help improve the precision of comparisons of jet cross section data and NLO perturbative QCD predictions. %this is new The distribution of the sum of the track momenta in the two cones is also examined for five different $E_T^{(1)}$ bins. The HERWIG and PYTHIA Monte Carlos are reasonably successful in describing the data, but neither can describe completely all of the event properties.

0 data tables match query