Measurement of the $\pi^-$ Form-factor

Dally, E.B. ; Drickey, Darrell James ; Hauptman, J.M. ; et al.
Phys.Rev.D 24 (1981) 1718-1735, 1981.
Inspire Record 172687 DOI 10.17182/hepdata.26467

An experiment to measure the electromagnetic form factor of the negative π meson has been carried out at Fermilab by elastically scattering 100-GeV/c pions from the atomic electrons in a liquid-hydrogen target. We find that the elastic differential scattering cross section is characterized by a root-mean-square pion charge radius of 0.56±0.04 fm. This paper described our experimental design, measurement resolutions, event triggering logic, event reconstruction, experimental corrections, and form-factor results.

0 data tables match query

Direct Measurement of the pi- Form-Factor.

Dally, E.B. ; Drickey, Darrell James ; Hauptman, J.M. ; et al.
Phys.Rev.Lett. 39 (1977) 1176-1179, 1977.
Inspire Record 123313 DOI 10.17182/hepdata.20975

We have measured the electromagnetic form factor of the charged pion by direct scattering of 100-GeV/c π− from stationary electrons in a liquid-hydrogen target at Fermilab. The deviations from the pointlike pion-scattering cross section may be characterized by a root-mean-square charge radius for the pion of 〈rπ2〉12=0.56±0.04 F.

0 data tables match query

Measurements of Inclusive Muon Neutrino and Antineutrino Charged Current Differential Cross Sections on Argon in the NuMI Antineutrino Beam

The ArgoNeuT collaboration Acciarri, R. ; Adams, C. ; Asaadi, J. ; et al.
Phys.Rev.D 89 (2014) 112003, 2014.
Inspire Record 1291281 DOI 10.17182/hepdata.64419

The ArgoNeuT collaboration presents measurements of inclusive muon neutrino and antineutrino charged current differential cross sections on argon in the Fermilab NuMI beam operating in the low energy antineutrino mode. The results are reported in terms of outgoing muon angle and momentum at a mean neutrino energy of 9.6 GeV (neutrinos) and 3.6 GeV (antineutrinos), in the range $0^\circ < \theta_\mu < 36^\circ$ and $0 < p_\mu < 25$ GeV/$c$, for both neutrinos and antineutrinos.

0 data tables match query

Precise Measurement of the $\Xi^-$ Magnetic Moment

Duryea, J. ; Guglielmo, G. ; Heller, Kenneth J. ; et al.
Phys.Rev.Lett. 68 (1992) 768-771, 1992.
Inspire Record 335825 DOI 10.17182/hepdata.19850

With 4.36×106 events, spin precession in a magnetic field has been used to measure the magnetic moment of the Ξ− hyperon as -0.6505±0.0025 nuclear magnetons.

0 data tables match query

Polarization of $\Xi^-$ Hyperons Produced by 800-GeV Protons

Duryea, J. ; Guglielmo, G. ; Heller, Kenneth J. ; et al.
Phys.Rev.Lett. 67 (1991) 1193-1196, 1991.
Inspire Record 322767 DOI 10.17182/hepdata.19903

The polarization PΞ− of Ξ− hyperons produced by 800-GeV protons has been measured for xF from 0.3 to 0.7 and pT from 0.5 to 1.5 GeV/c. PΞ− has a pT dependence similar to that of the Λ but has a different xF behavior. Also, an energy dependence of PΞ− has been observed.

0 data tables match query

Search for Neutrino-Induced Neutral Current $\Delta$ Radiative Decay in MicroBooNE and a First Test of the MiniBooNE Low Energy Excess Under a Single-Photon Hypothesis

The MicroBooNE collaboration Abratenko, P. ; An, R. ; Anthony, J. ; et al.
Phys.Rev.Lett. 128 (2022) 111801, 2022.
Inspire Record 1937333 DOI 10.17182/hepdata.114860

We report results from a search for neutrino-induced neutral current (NC) resonant $\Delta$(1232) baryon production followed by $\Delta$ radiative decay, with a $\langle0.8\rangle$~GeV neutrino beam. Data corresponding to MicroBooNE's first three years of operations (6.80$\times$10$^{20}$ protons on target) are used to select single-photon events with one or zero protons and without charged leptons in the final state ($1\gamma1p$ and $1\gamma0p$, respectively). The background is constrained via an in-situ high-purity measurement of NC $\pi^0$ events, made possible via dedicated $2\gamma1p$ and $2\gamma0p$ selections. A total of 16 and 153 events are observed for the $1\gamma1p$ and $1\gamma0p$ selections, respectively, compared to a constrained background prediction of $20.5 \pm 3.65 \text{(sys.)} $ and $145.1 \pm 13.8 \text{(sys.)} $ events. The data lead to a bound on an anomalous enhancement of the normalization of NC $\Delta$ radiative decay of less than $2.3$ times the predicted nominal rate for this process at the 90% confidence level (CL). The measurement disfavors a candidate photon interpretation of the MiniBooNE low-energy excess as a factor of $3.18$ times the nominal NC $\Delta$ radiative decay rate at the 94.8% CL, in favor of the nominal prediction, and represents a greater than $50$-fold improvement over the world's best limit on single-photon production in NC interactions in the sub-GeV neutrino energy range

0 data tables match query

Production Polarization and Magnetic Moment of $\Xi^{-+}$ Antihyperons Produced by 800-GeV/c Protons

Ho, P.M. ; Longo, M.J. ; Nguyen, A. ; et al.
Phys.Rev.Lett. 65 (1990) 1713-1716, 1990.
Inspire Record 296567 DOI 10.17182/hepdata.22752

The polarization of Ξ¯ + hyperons produced by 800-GeV/c protons in the inclusive reaction p+Be→Ξ¯ ++X has been measured. The average polarization of the Ξ¯ +, at a mean xF=0.39 and pt=0.76 GeV/c, is -0.097±0.012±0.009. The magnetic moment of the Ξ¯ + is 0.657±0.028±0.020 nuclear magneton.

0 data tables match query

Search for an anomalous excess of charged-current quasi-elastic $\nu_e$ interactions with the MicroBooNE experiment using Deep-Learning-based reconstruction

The MicroBooNE collaboration Abratenko, P. ; An, R. ; Anthony, J. ; et al.
Phys.Rev.D 105 (2022) 112003, 2022.
Inspire Record 1953568 DOI 10.17182/hepdata.114859

We present a measurement of the $\nu_e$-interaction rate in the MicroBooNE detector that addresses the observed MiniBooNE anomalous low-energy excess (LEE). The approach taken isolates neutrino interactions consistent with the kinematics of charged-current quasi-elastic (CCQE) events. The topology of such signal events has a final state with 1 electron, 1 proton, and 0 mesons ($1e1p$). Multiple novel techniques are employed to identify a $1e1p$ final state, including particle identification that use two methods of deep-learning-based image identification, and event isolation using a boosted decision-tree ensemble trained to recognize two-body scattering kinematics. This analysis selects 25 $\nu_e$-candidate events in the reconstructed neutrino energy range of 200--1200 MeV, while $29.0 \pm 1.9_\text{(sys)} \pm 5.4_\text{(stat)}$ are predicted when using $\nu_\mu$ CCQE interactions as a constraint. We use a simplified model to translate the MiniBooNE LEE observation into a prediction for a $\nu_e$ signal in MicroBooNE. A $\Delta \chi^2$ test statistic, based on the combined Neyman--Pearson $\chi^2$ formalism, is used to define frequentist confidence intervals for the LEE signal strength. Using this technique, in the case of no LEE signal, we expect this analysis to exclude a normalization factor of 0.75 (0.98) times the median MiniBooNE LEE signal strength at 90% ($2\sigma$) confidence level, while the MicroBooNE data yield an exclusion of 0.25 (0.38) times the median MiniBooNE LEE signal strength at 90% ($2\sigma$) confidence

0 data tables match query

First Measurement of Energy-dependent Inclusive Muon Neutrino Charged-Current Cross Sections on Argon with the MicroBooNE Detector

The MicroBooNE collaboration Abratenko, P. ; An, R. ; Anthony, J. ; et al.
Phys.Rev.Lett. 128 (2022) 151801, 2022.
Inspire Record 1954078 DOI 10.17182/hepdata.114863

We report a measurement of the energy-dependent total charged-current cross section $\sigma\left(E_\nu\right)$ for inclusive muon neutrinos scattering on argon, as well as measurements of flux-averaged differential cross sections as a function of muon energy and hadronic energy transfer ($\nu$). Data corresponding to 5.3$\times$10$^{19}$ protons on target of exposure were collected using the MicroBooNE liquid argon time projection chamber located in the Fermilab Booster Neutrino Beam with a mean neutrino energy of approximately 0.8~GeV. The mapping between the true neutrino energy $E_\nu$ and reconstructed neutrino energy $E^{rec}_\nu$ and between the energy transfer $\nu$ and reconstructed hadronic energy $E^{rec}_{had}$ are validated by comparing the data and Monte Carlo (MC) predictions. In particular, the modeling of the missing hadronic energy and its associated uncertainties are verified by a new method that compares the $E^{rec}_{had}$ distributions between data and an MC prediction after constraining the reconstructed muon kinematic distributions, energy and polar angle, to those of data. The success of this validation gives confidence that the missing energy in the MicroBooNE detector is well-modeled and underpins first-time measurements of both the total cross section $\sigma\left(E_\nu\right)$ and the differential cross section $d\sigma/d\nu$ on argon.

0 data tables match query

Version 3
Search for an anomalous excess of inclusive charged-current $\nu_e$ interactions in the MicroBooNE experiment using Wire-Cell reconstruction

The MicroBooNE collaboration Abratenko, P. ; An, R. ; Anthony, J. ; et al.
Phys.Rev.D 105 (2022) 112005, 2022.
Inspire Record 1953539 DOI 10.17182/hepdata.114862

We report a search for an anomalous excess of inclusive charged-current (CC) $\nu_e$ interactions using the Wire-Cell event reconstruction package in the MicroBooNE experiment, which is motivated by the previous observation of a low-energy excess (LEE) of electromagnetic events from the MiniBooNE experiment. With a single liquid argon time projection chamber detector, the measurements of $\nu_{\mu}$ CC interactions as well as $\pi^0$ interactions are used to constrain signal and background predictions of $\nu_e$ CC interactions. A data set collected from February 2016 to July 2018 corresponding to an exposure of 6.369 $\times$ 10$^{20}$ protons on target from the Booster Neutrino Beam at FNAL is analyzed. With $x$ representing an overall normalization factor and referred to as the LEE strength parameter, we select 56 fully contained $\nu_e$ CC candidates while expecting 69.6 $\pm$ 8.0 (stat.) $\pm$ 5.0 (sys.) and 103.8 $\pm$ 9.0 (stat.) $\pm$ 7.4 (sys.) candidates after constraints for the absence (eLEE$_{x=0}$) of the median signal strength derived from the MiniBooNE observation and the presence (eLEE$_{x=1}$) of that signal strength, respectively. Under a nested hypothesis test using both rate and shape information in all available channels, the best-fit $x$ is determined to be 0 (eLEE$_{x=0}$) with a 95.5% confidence level upper limit of $x$ at 0.502. Under a simple-vs-simple hypotheses test, the eLEE$_{x=1}$ hypothesis is rejected at 3.75$\sigma$, while the eLEE$_{x=0}$ hypothesis is shown to be consistent with the observation at 0.45$\sigma$. In the context of the eLEE model, the estimated 68.3% confidence interval of the $\nu_e$ hypothesis to explain the LEE observed in the MiniBooNE experiment is disfavored at a significance level of more than 2.6$\sigma$ (3.0$\sigma$) considering MiniBooNE's full (statistical) uncertainties.

0 data tables match query

Measurement of the Omega- Magnetic Moment

Diehl, H.T. ; Teige, S. ; Thomson, G.B. ; et al.
Phys.Rev.Lett. 67 (1991) 804-807, 1991.
Inspire Record 317788 DOI 10.17182/hepdata.19879

A sample of 24 700 Ω− hyperons was produced by a prolarized neutral beam in a spin-transfer reaction. The Ω− polarizations are found to be -0.054±0.019 and -0.149±0.055 at mean Ω− momenta of 322 and 398 GeV/c, respectively. The directions of these polarizations give an Ω− magnetic moment of -(1.94±0.17±0.14)μN

0 data tables match query

Polarization of $\Omega^-$ Hyperons Produced in 800 GeV Proton - Beryllium Collisions

Luk, K.B. ; James, C. ; Rameika, R. ; et al.
Phys.Rev.Lett. 70 (1993) 900-903, 1993.
Inspire Record 345978 DOI 10.17182/hepdata.19740

The polarization of 103 211 Ω− hyperons produced in 800 GeV proton-beryllium inclusive reactions has been measured. Between 0.3<xF<0.7 and 0.5<pt<1.3 GeV/c, the Ω− polarization is found to be consistent with zero, with a mean value of -0.01±0.01 at 〈xF〉=0.5 and 〈pt〉=0.95 GeV/c. This behavior is similar to that of Λ¯0, which also does not have any quarks in common with the incident proton, but is different from Ξ¯+, which is significantly polarized in the same kinematic region.

0 data tables match query

INCLUSIVE PRODUCTION OF OMEGA- AND ANTI-OMEGA+ BY K0(L) CARBON INTERACTIONS IN THE ENERGY RANGE 80-GEV/C - 280-GEV/C

Hartouni, Edward P. ; Atiya, M.S. ; Holmes, Stephen D. ; et al.
Phys.Rev.Lett. 54 (1985) 628-630, 1985.
Inspire Record 216075 DOI 10.17182/hepdata.20341

We have measured the total cross sections of Ω− and Ω¯+ forward (xF>~0) inclusive production in KL0-carbon interactions in the range EK0=80 to 280 GeV to be 3.5±1.4 and 2.4±1.0 μb, respectively. We observe that the xF distributions for both of these states are increasing from xF=0 to xF≈0.6. The p⊥2 distributions are described as an exponential function in p⊥ with an average p⊥2 of 0.540 GeV2/c2.

0 data tables match query

Measurement of the Multiple-Muon Charge Ratio in the MINOS Far Detector

The MINOS collaboration Adamson, P. ; Anghel, I. ; Aurisano, A. ; et al.
Phys.Rev.D 93 (2016) 052017, 2016.
Inspire Record 1419065 DOI 10.17182/hepdata.77051

The charge ratio, $R_\mu = N_{\mu^+}/N_{\mu^-}$, for cosmogenic multiple-muon events observed at an under- ground depth of 2070 mwe has been measured using the magnetized MINOS Far Detector. The multiple-muon events, recorded nearly continuously from August 2003 until April 2012, comprise two independent data sets imaged with opposite magnetic field polarities, the comparison of which allows the systematic uncertainties of the measurement to be minimized. The multiple-muon charge ratio is determined to be $R_\mu = 1.104 \pm 0.006 {\rm \,(stat.)} ^{+0.009}_{-0.010} {\rm \,(syst.)} $. This measurement complements previous determinations of single-muon and multiple-muon charge ratios at underground sites and serves to constrain models of cosmic ray interactions at TeV energies.

0 data tables match query

Transverse momentum cross section of $e^+e^-$ pairs in the $Z$-boson region from $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV

The CDF collaboration Aaltonen, T. ; Alvarez Gonzalez, B. ; Amerio, S. ; et al.
Phys.Rev.D 86 (2012) 052010, 2012.
Inspire Record 1124333 DOI 10.17182/hepdata.60522

The transverse momentum cross section of $e^+e^-$ pairs in the $Z$-boson mass region of 66-116 GeV/$c^2$ is precisely measured using Run II data corresponding to 2.1 fb$^{-1}$ of integrated luminosity recorded by the Collider Detector at Fermilab. The cross section is compared with quantum chromodynamic calculations. One is a fixed-order perturbative calculation at ${\cal O}(\alpha_s^2)$, and the other combines perturbative predictions at high transverse momentum with the gluon resummation formalism at low transverse momentum. Comparisons of the measurement with calculations show reasonable agreement. The measurement is of sufficient precision to allow refinements in the understanding of the transverse momentum distribution.

0 data tables match query

Studies of topological distributions of inclusive the three and four jet events in anti-P P collisions at s**(1/2) = 1800-GeV with the D0 detector

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.D 53 (1996) 6000-6016, 1996.
Inspire Record 399364 DOI 10.17182/hepdata.11124

The global topologies of inclusive three-- and four--jet events produced in $\pp$ interactions are described. The three-- and four--jet events are selected from data recorded by the D\O\ detector at the Tevatron Collider operating at a center--of--mass energy of $\sqrt{s} = 1800$ GeV. The measured, normalized distributions of various topological variables are compared with parton--level predictions of tree--level QCD calculations. The parton--level QCD calculations are found to be in good agreement with the data. The studies also show that the topological distributions of the different subprocesses involving different numbers of quarks are very similar and reproduce the measured distributions well. The parton shower Monte Carlo generators provide a less satisfactory description of the topologies of the three-- and four--jet events.

0 data tables match query

Measurement of the Differential Cross Section $d{\sigma}/d(\cos {\theta}t)$ for Top-Quark Pair Production in $p-\bar{p}$ Collisions at $\sqrt{s} = 1.96$ TeV

The CDF collaboration Aaltonen, T. ; Amerio, S. ; Amidei, D. ; et al.
Phys.Rev.Lett. 111 (2013) 182002, 2013.
Inspire Record 1238100 DOI 10.17182/hepdata.64392

We report a measurement of the differential cross section, d{\sigma}/d(cos {\theta}t), for top-quark-pair production as a function of the top-quark production angle in proton-antiproton collisions at sqrt{s} = 1.96 TeV. This measurement is performed using data collected with the CDF II detector at the Tevatron, corresponding to an integrated luminosity of 9.4/fb. We employ the Legendre polynomials to characterize the shape of the differential cross section at the parton level. The observed Legendre coefficients are in good agreement with the prediction of the next-to-leading-order standard-model calculation, with the exception of an excess linear-term coefficient, a1 = 0.40 +- 0.12, compared to the standard-model prediction of a1 = 0.15^{+0.07}_{-0.03}.

0 data tables match query

Measurement of the Cross Section for Direct-Photon Production in Association with a Heavy Quark in $p\bar{p}$ Collisions at $\sqrt{s}$ = 1.96 TeV

The CDF collaboration Aaltonen, T. ; Amerio, S. ; Amidei, D. ; et al.
Phys.Rev.Lett. 111 (2013) 042003, 2013.
Inspire Record 1225278 DOI 10.17182/hepdata.61735

We report on a measurement of the cross section for direct-photon production in association with a heavy quark using the full data set of $\sqrt{s}=1.96$ TeV proton-antiproton collisions corresponding to 9.1 fb$^{-1}$ of integrated luminosity collected by the CDF II detector at the Fermilab Tevatron. The measurements are performed as a function of the photon transverse momentum, covering photon transverse momentum between 30 and 300 GeV, photon rapidities $|y^{\gamma}|<1.0$, heavy-quark-jet transverse momentum $p_{T}^{jet}>20$ GeV, and jet rapidities $|y^{jet}|<1.5$. The results are compared with several theoretical predictions.

0 data tables match query

Observation of the top quark

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 74 (1995) 2632-2637, 1995.
Inspire Record 393099 DOI 10.17182/hepdata.42452

The DO collaboration reports on a search for the Standard Model top quark in pbar-p collisions at Sqrt(s)=1.8TeV at the Fermilab Tevatron, with an integrated luminosity of approximately 50pb-1. We have searched for t-tbar production in the dilepton and single-lepton decay channels, with and without tagging of b-quark jets. We observed 17 events with an expected background of 3.8+/-0.6 events. The probability for an upward fluctuation of the background to produce the observed signal is 2.0E-6 (equivalent to 4.6 standard deviations). The kinematic properties of the excess events are consistent with top quark decay. We conclude that we have observed the top quark and measure its mass to be 199~+19_21 (stat.)+/- 22 (syst.)GeV/c**2 and its production cross section to be 6.4 +/- 2.2 pb.

0 data tables match query

Measurement of the cross section for prompt isolated diphoton production using the full CDF Run II data sample

The CDF collaboration Aaltonen, T. ; Amerio, S. ; Amidei, D. ; et al.
Phys.Rev.Lett. 110 (2013) 101801, 2013.
Inspire Record 1207879 DOI 10.17182/hepdata.66020

This Letter reports a measurement of the cross section for producing pairs of central prompt isolated photons in proton-antiproton collisions at a total energy of 1.96 TeV using data corresponding to 9.5/fb integrated luminosity collected with the CDF II detector at the Fermilab Tevatron. The measured differential cross section is compared to three calculations derived from the theory of strong interactions. These include a prediction based on a leading order matrix element calculation merged with parton shower, a next-to-leading order, and a next-to-next-to-leading order calculation. The first and last calculations reproduce most aspects of the data, thus showing the importance of higher-order contributions for understanding the theory of strong interaction and improving measurements of the Higgs boson and searches for new phenomena in diphoton final states.

0 data tables match query

Measurement of the Cross Section for Prompt Isolated Diphoton Production in p\bar p Collisions at \sqrt{s} = 1.96 TeV

The CDF collaboration Aaltonen, T. ; Alvarez Gonzalez, B. ; Amerio, S. ; et al.
Phys.Rev.D 84 (2011) 052006, 2011.
Inspire Record 915978 DOI 10.17182/hepdata.60557

This article reports a measurement of the production cross section of prompt isolated photon pairs in proton-antiproton collisions at \sqrt{s} = 1.96 TeV using the CDF II detector at the Fermilab Tevatron collider. The data correspond to an integrated luminosity of 5.36/fb. The cross section is presented as a function of kinematic variables sensitive to the reaction mechanisms. The results are compared with three perturbative QCD calculations: (1) a leading order parton shower Monte Carlo, (2) a fixed next-to-leading order calculation and (3) a next-to-leading order/next-to-next-to-leading-log resummed calculation. The comparisons show that, within their known limitations, all calculations predict the main features of the data, but no calculation adequately describes all aspects of the data.

0 data tables match query

Measurement of the Cross Section for Prompt Isolated Diphoton Production in p\bar p Collisions at \sqrt{s} = 1.96 TeV

The CDF collaboration Aaltonen, T. ; Alvarez Gonzalez, B. ; Amerio, S. ; et al.
Phys.Rev.Lett. 107 (2011) 102003, 2011.
Inspire Record 915980 DOI 10.17182/hepdata.61208

This letter reports a measurement of the cross section of prompt isolated photon pair production in p\bar p collisions at a total energy \sqrt{s} = 1.96 TeV using data of 5.36/fb integrated luminosity collected with the CDF II detector at the Fermilab Tevatron. The measured cross section, differential in basic kinematic variables, is compared with three perturbative QCD predictions, a Leading Order (LO) parton shower calculation and two Next-to-Leading Order (NLO) calculations. The NLO calculations reproduce most aspects of the data. By including photon radiation from quarks before and after hard scattering, the parton shower prediction becomes competitive with the NLO predictions.

0 data tables match query

HIGH-ENERGY DIFFRACTION DISSOCIATION OF K0(L) INTO EXCLUSIVE FINAL STATES

Lamm, M.J. ; Wiss, J.E. ; Avery, P. ; et al.
Phys.Rev.D 36 (1987) 3341-3352, 1987.
Inspire Record 244943 DOI 10.17182/hepdata.23353

We have observed diffraction dissociation of KL0 mesons with a carbon target into the exclusive final states KS0π+π−, KS0ω, and KS0φ. The diffraction production cross section for these states is not strongly dependent on the incident energy, varying at most by 30% between 75 and 150 GeV. The mass distributions do not change appreciably as a function of laboratory energy. The ratio of the diffractive mass-threshold production of K*±π∓, KS0ρ, KS0ω, and KS0φ is compared with previously obtained lower-energy data.

0 data tables match query

The Underlying event in hard interactions at the Tevatron anti-p p collider

The CDF collaboration Acosta, D. ; Affolder, T. ; Albrow, M.G. ; et al.
Phys.Rev.D 70 (2004) 072002, 2004.
Inspire Record 647490 DOI 10.17182/hepdata.22135

For comparison of inclusive jet cross sections measured at hadron-hadron colliders to next-to-leading order (NLO) parton-level calculations, the energy deposited in the jet cone by spectator parton interactions must first be subtracted. The assumption made at the Tevatron is that the spectator parton interaction energy is similar to the ambient level measured in minimum bias events. In this paper, we test this assumption by measuring the ambient charged track momentum in events containing large transverse energy jets at $\sqrt{s}=1800$ GeV and $\sqrt{s}=630$ GeV and comparing this ambient momentum with that observed both in minimum bias events and with that predicted by two Monte Carlo models. Two cones in $\eta$--$\phi$ space are defined, at the same pseudo-rapidity, $\eta$, as the jet with the highest transverse energy ($E_T^{(1)}$), and at $\pm 90^o$ in the azimuthal direction, $\phi$. The total charged track momentum inside each of the two cones is measured. The minimum momentum in the two cones is almost independent of $E_T^{(1)}$ and is similar to the momentum observed in minimum bias events, whereas the maximum momentum increases roughly linearly with the jet $E_T^{(1)}$ over most of the measured range. This study will help improve the precision of comparisons of jet cross section data and NLO perturbative QCD predictions. %this is new The distribution of the sum of the track momenta in the two cones is also examined for five different $E_T^{(1)}$ bins. The HERWIG and PYTHIA Monte Carlos are reasonably successful in describing the data, but neither can describe completely all of the event properties.

0 data tables match query

Direct measurement of the top quark mass at D\O

The D0 collaboration Abbott, B. ; Abolins, M. ; Acharya, B.S. ; et al.
Phys.Rev.D 58 (1998) 052001, 1998.
Inspire Record 466578 DOI 10.17182/hepdata.42170

We determine the top quark mass m_t using t-tbar pairs produced in the D0 detector by \sqrt{s} = 1.8 TeV p-pbar collisions in a 125 pb^-1 exposure at the Fermilab Tevatron. We make a two constraint fit to m_t in t-tbar -> b W^+bbar W^- final states with one W boson decaying to q-qbar and the other to e-nu or mu-nu. Likelihood fits to the data yield m_t(l+jets) = 173.3 +- 5.6 (stat) +- 5.5 (syst) GeV/c^2. When this result is combined with an analysis of events in which both W bosons decay into leptons, we obtain m_t = 172.1 +- 5.2 (stat) +- 4.9 (syst) GeV/c^2. An alternate analysis, using three constraint fits to fixed top quark masses, gives m_t(l+jets) = 176.0 +- 7.9 (stat) +- 4.8 (syst) GeV/C^2, consistent with the above result. Studies of kinematic distributions of the top quark candidates are also presented.

0 data tables match query