Transverse momentum spectra of b jets in pPb collisions at sqrt(s[NN]) = 5.02 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 754 (2016) 59, 2016.
Inspire Record 1397180 DOI 10.17182/hepdata.72511

We present a measurement of b jet transverse momentum (pt) spectra in proton-lead (pPb) collisions using a dataset corresponding to about 35 inverse nanobarns collected with the CMS detector at the LHC. Jets from b quark fragmentation are found by exploiting the long lifetime of hadrons containing a b quark through tagging methods using distributions of the secondary vertex mass and displacement. Extracted cross sections for b jets are scaled by the effective number of nucleon-nucleon collisions and are compared to a reference obtained from PYTHIA simulations of pp collisions. The PYTHIA-based estimate of the nuclear modification factor is found to be 1.22 +/- 0.15 (stat + syst pPb) +/- 0.27 (syst PYTHIA) averaged over all jets with pt between 55 and 400 GeV/c and with abs(eta[lab]) < 2. We also compare this result to predictions from models using perturbative calculations in quantum chromodynamics.

0 data tables match query

Transverse-momentum and pseudorapidity distributions of charged hadrons in pp collisions at sqrt(s) = 7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M. ; Tumasyan, Armen ; et al.
Phys.Rev.Lett. 105 (2010) 022002, 2010.
Inspire Record 855299 DOI 10.17182/hepdata.56006

Charged-hadron transverse-momentum and pseudorapidity distributions in proton-proton collisions at sqrt(s) = 7 TeV are measured with the inner tracking system of the CMS detector at the LHC. The charged-hadron yield is obtained by counting the number of reconstructed hits, hit-pairs, and fully reconstructed charged-particle tracks. The combination of the three methods gives a charged-particle multiplicity per unit of pseudorapidity, dN(charged)/d(eta), for |eta| < 0.5, of 5.78 +/- 0.01 (stat) +/- 0.23 (syst) for non-single-diffractive events, higher than predicted by commonly used models. The relative increase in charged-particle multiplicity from sqrt(s) = 0.9 to 7 TeV is 66.1% +/- 1.0% (stat) +/- 4.2% (syst). The mean transverse momentum is measured to be 0.545 +/- 0.005 (stat) +/- 0.015 (syst) GeV/c. The results are compared with similar measurements at lower energies.

0 data tables match query

Two-body neutral final states produced in anti-proton - proton annihilations at 2.911-GeV <= s**(1/2) <= 3.686-GeV

The Fermilab E760 collaboration Armstrong, T.A. ; Bettoni, D. ; Bharadwaj, V. ; et al.
Phys.Rev.D 56 (1997) 2509-2531, 1997.
Inspire Record 444897 DOI 10.17182/hepdata.22300

We have performed an experiment in the Antiproton Accumulator at Fermilab to study two-body neutral final states formed in p¯p annihilations. Differential cross sections are determined in the center-of-mass energy range 2.911<s<3.686 GeV for the final states π0π0, ηπ0, ηη, π0γ, and γγ. The energy dependence of differential cross sections at 90° in the center of mass is studied to test the predictions of phenomenological QCD scaling hypotheses which predict power-law dependence.

0 data tables match query

Two-particle Bose-Einstein correlations and their Lévy parameters in PbPb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.C 109 (2024) 024914, 2024.
Inspire Record 2670243 DOI 10.17182/hepdata.134676

Two-particle Bose-Einstein momentum correlation functions are studied for charged-hadron pairs in lead-lead collisions at a center-of-mass energy per nucleon pair of $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV. The data sample, containing 4.27 $\times$$10^{9}$ minimum bias events corresponding to an integrated luminosity of 0.607 nb$^{-1}$, was collected by the CMS experiment in 2018. The experimental results are discussed in terms of a Lévy-type source distribution. The parameters of this distribution are extracted as functions of particle pair average transverse mass and collision centrality. These parameters include the Lévy index or shape parameter ($\alpha$), the Lévy scale parameter ($R$), and the correlation strength parameter ($\lambda$). The source shape, characterized by $\alpha$, is found to be neither Cauchy nor Gaussian, implying the need for a full Lévy analysis. Similarly to what was previously found for systems characterized by Gaussian source radii, a hydrodynamical scaling is observed for the Lévy $R$ parameter. The $\lambda$ parameter is studied in terms of the core-halo model.

0 data tables match query

Two-particle azimuthal correlations in $\gamma$p interactions using pPb collisions at $\sqrt{s_\mathrm{NN}}$ = 8.16 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Bergauer, Thomas ; et al.
Phys.Lett.B 844 (2023) 137905, 2023.
Inspire Record 2074094 DOI 10.17182/hepdata.89877

The first measurements of the Fourier coefficients ($V_{n\Delta}$) of the azimuthal distributions of charged hadrons emitted from photon-proton ($\gamma$p) interactions at the LHC are presented. The data are extracted from 68.8 nb$^{-1}$ of ultra-peripheral proton-lead (pPb) collisions at $\sqrt{s_\mathrm{NN}}$ = 8.16 TeV using the CMS detector. The high energy lead ions produce a flux of photons that can interact with the oncoming proton. This $\gamma$p system provides a set of unique initial conditions with multiplicity lower than in photon-lead collisions but comparable to recent electron-positron and electron-proton data. The $V_{n\Delta}$ coefficients are presented in ranges of event multiplicity and transverse momentum ($p_\mathrm{T}$) and are compared to corresponding hadronic minimum bias pPb results. For a given multiplicity range, the mean $p_\mathrm{T}$ of charged particles is smaller in $\gamma$p than in pPb collisions. For both the $\gamma$p and pPb samples, $V_{1\Delta}$ is negative, $V_{2\Delta}$ is positive, and $V_{3\Delta}$ consistent with 0. For each multiplicity and $p_\mathrm{T}$ range, $V_{2\Delta}$ is larger for $\gamma$p events. The $\gamma$p data are consistent with model predictions that have no collective effects.

0 data tables match query

Two-particle correlations in azimuthal angle and pseudorapidity in inelastic p+p interactions at the CERN Super Proton Synchrotron

The NA61/SHINE collaboration Aduszkiewicz, A. ; Ali, Y. ; Andronov, E. ; et al.
Eur.Phys.J.C 77 (2017) 59, 2017.
Inspire Record 1489238 DOI 10.17182/hepdata.76899

Results on two-particle $\Delta\eta\Delta\phi$ correlations in inelastic p+p interactions at 20, 31, 40, 80, and 158~GeV/c are presented. The measurements were performed using the large acceptance NA61/SHINE hadron spectrometer at the CERN Super Proton Synchrotron. The data show structures which can be attributed mainly to effects of resonance decays, momentum conservation, and quantum statistics. The results are compared with the EPOS and UrQMD models.

0 data tables match query

Underlying event characteristics and their dependence on jet size of charged-particle jet events in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 86 (2012) 072004, 2012.
Inspire Record 1125575 DOI 10.17182/hepdata.58995

Distributions sensitive to the underlying event are studied in events containing one or more charged-particle jets produced in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector at the Large Hadron Collider (LHC). These measurements reflect 800 inverse microbarns of data taken during 2010. Jets are reconstructed using the antikt algorithm with radius parameter R varying between 0.2 and 1.0. Distributions of the charged-particle multiplicity, the scalar sum of the transverse momentum of charged particles, and the average charged-particle pT are measured as functions of pT^JET in regions transverse to and opposite the leading jet for 4 GeV < pT^JET < 100 GeV. In addition, the R-dependence of the mean values of these observables is studied. In the transverse region, both the multiplicity and the scalar sum of the transverse momentum at fixed pT^JET vary significantly with R, while the average charged-particle transverse momentum has a minimal dependence on R. Predictions from several Monte Carlo tunes have been compared to the data; the predictions from Pythia 6, based on tunes that have been determined using LHC data, show reasonable agreement with the data, including the dependence on R. Comparisons with other generators indicate that additional tuning of soft-QCD parameters is necessary for these generators. The measurements presented here provide a testing ground for further development of the Monte Carlo models.

0 data tables match query

Updated MiniBooNE Neutrino Oscillation Results with Increased Data and New Background Studies

The MiniBooNE collaboration Aguilar-Arevalo, A.A. ; Brown, B.C. ; Conrad, J.M. ; et al.
Phys.Rev.D 103 (2021) 052002, 2021.
Inspire Record 1804293 DOI 10.17182/hepdata.114365

The MiniBooNE experiment at Fermilab reports a total excess of $638.0 \pm 132.8$ electron-like events ($4.8 \sigma$) from a data sample corresponding to $18.75 \times 10^{20}$ protons-on-target in neutrino mode, which is a 46\% increase in the data sample with respect to previously published results, and $11.27 \times 10^{20}$ protons-on-target in antineutrino mode. The additional statistics allow several studies to address questions on the source of the excess. First, we provide two-dimensional plots in visible energy and cosine of the angle of the outgoing lepton, which can provide valuable input to models for the event excess. Second, we test whether the excess may arise from photons that enter the detector from external events or photons exiting the detector from $\pi^0$ decays in two model independent ways. Beam timing information shows that almost all of the excess is in time with neutrinos that interact in the detector. The radius distribution shows that the excess is distributed throughout the volume, while tighter cuts on the fiducal volume increase the significance of the excess. We conclude that models of the event excess based on entering and exiting photons are disfavored.

0 data tables match query

Upsilon Production Cross-Section in pp Collisions at $sqrt{s}=7$ TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M. ; Tumasyan, Armen ; et al.
Phys.Rev.D 83 (2011) 112004, 2011.
Inspire Record 882871 DOI 10.17182/hepdata.57722

The Upsilon production cross section in proton-proton collisions at sqrt(s) = 7 TeV is measured using a data sample collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 3.1 +/- 0.3 inverse picobarns. Integrated over the rapidity range |y|<2, we find the product of the Upsilon(1S) production cross section and branching fraction to dimuons to be sigma(pp to Upsilon(1S) X) B(Upsilon(1S) to mu+ mu-) = 7.37 +/- 0.13^{+0.61}_{-0.42}\pm 0.81 nb, where the first uncertainty is statistical, the second is systematic, and the third is associated with the estimation of the integrated luminosity of the data sample. This cross section is obtained assuming unpolarized Upsilon(1S) production. If the Upsilon(1S) production polarization is fully transverse or fully longitudinal the cross section changes by about 20%. We also report the measurement of the Upsilon(1S), Upsilon(2S), and Upsilon(3S) differential cross sections as a function of transverse momentum and rapidity.

0 data tables match query

Upsilon production and polarization in p anti-p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Acosta, D. ; Affolder, T. ; Akimoto, H. ; et al.
Phys.Rev.Lett. 88 (2002) 161802, 2002.
Inspire Record 569269 DOI 10.17182/hepdata.42894

We report on measurements of the ϒ(1S), ϒ(2S), and ϒ(3S) differential cross sections (d2σ/dpTdy)|y|<0.4, as well as on the ϒ(1S) polarization in pp¯ collisions at s=1.8TeV using a sample of 77±3pb−1 collected by the collider detector at Fermilab. The three resonances were reconstructed through the decay ϒ→μ+μ−. The measured angular distribution of the muons in the ϒ(1S) rest frame is consistent with unpolarized meson production.

0 data tables match query