New Measurement of the Production Polarization and Magnetic Moment of the Cascade Minus Hyperon

Trost, L.H. ; McCliment, E.R. ; Newsom, C.R. ; et al.
Phys.Rev.D 40 (1989) 1703, 1989.
Inspire Record 280604 DOI 10.17182/hepdata.23053

We have measured the production polarization and magnetic moment of a sample of 89×103Ξ− hyperons produced in the inclusive reaction p(400 GeV/c)+Cu→Ξ−+X. The weighted average of the polarization is -0.070±0.008±0.010 at a pt of 0.63 GeV/c. The Ξ−'s magnetic moment yields the value μΞ=−0.661±0.036±0.036 nuclear magnetons. The first error is statistical, the second systematic.

0 data tables match query

Polarization of $\Xi^-$ Hyperons Produced by 800-GeV Protons

Duryea, J. ; Guglielmo, G. ; Heller, Kenneth J. ; et al.
Phys.Rev.Lett. 67 (1991) 1193-1196, 1991.
Inspire Record 322767 DOI 10.17182/hepdata.19903

The polarization PΞ− of Ξ− hyperons produced by 800-GeV protons has been measured for xF from 0.3 to 0.7 and pT from 0.5 to 1.5 GeV/c. PΞ− has a pT dependence similar to that of the Λ but has a different xF behavior. Also, an energy dependence of PΞ− has been observed.

0 data tables match query

Production Polarization and Magnetic Moment of $\Xi^{-+}$ Antihyperons Produced by 800-GeV/c Protons

Ho, P.M. ; Longo, M.J. ; Nguyen, A. ; et al.
Phys.Rev.Lett. 65 (1990) 1713-1716, 1990.
Inspire Record 296567 DOI 10.17182/hepdata.22752

The polarization of Ξ¯ + hyperons produced by 800-GeV/c protons in the inclusive reaction p+Be→Ξ¯ ++X has been measured. The average polarization of the Ξ¯ +, at a mean xF=0.39 and pt=0.76 GeV/c, is -0.097±0.012±0.009. The magnetic moment of the Ξ¯ + is 0.657±0.028±0.020 nuclear magneton.

0 data tables match query

Polarization of Xi- and Omega- hyperons produced from neutral beams

Woods, D.M. ; Border, P.M. ; Ciampa, D.P. ; et al.
Phys.Rev.D 54 (1996) 6610-6619, 1996.
Inspire Record 424017 DOI 10.17182/hepdata.22323

We have studied the polarization of Ξ− and Ω− hyperons produced by high energy neutral particle beams. An unpolarized neutral beam striking a target at ±1.8 mrad produced 1.4×107Ξ−'s with an average momentum of 395 GeV/c which were unpolarized, within a sensitivity limit of 0.007, and 2.2 × 105 Ω−'s with a polarization of +0.042±0.007 at an average momentum of 374 GeV/c. A polarized neutral beam striking a target at 0.0 mrad produced 7.1×105Ξ−'s which had a polarization of -0.118±0.004 at an average momentum of 393 GeV/c and 1.8 × 104 Ω−'s with a polarization of -0.069±0.023 at an average momentum of 394 GeV/c. The polarized neutral beam measurement is in good agreement with a previous measurement. The unpolarized neutral beam results are not understood in the context of the current models of hyperon polarization.

0 data tables match query

Analyzing Power Measurements of Coulomb Nuclear Interference With the Polarized Proton and Anti-proton Beams at 185 GeV/c

The E581/704 collaboration Akchurin, N. ; Carey, David C. ; Coleman, R. ; et al.
Phys.Lett.B 229 (1989) 299-303, 1989.
Inspire Record 280476 DOI 10.17182/hepdata.29782

The analyzing power A N of proton-proton, proton-hydrocarbon, and antiproton-hydrocarbon, scattering in the Coulomb-nuclear interference region has been measured using thhe 185 GeV/ c Fermilab polarized-proton and -antiproton beams. The results are found to be consistent with theoretical predictions within statistical uncertainties.

0 data tables match query

Angular analysis of the decay B0 to K*0 mu mu from pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 753 (2016) 424-448, 2016.
Inspire Record 1385600 DOI 10.17182/hepdata.17057

The angular distributions and the differential branching fraction of the decay B0 to K*0(892) mu mu are studied using data corresponding to an integrated luminosity of 20.5 inverse femtobarns collected with the CMS detector at the LHC in pp collisions at sqrt(s) = 8 TeV. From 1430 signal decays, the forward-backward asymmetry of the muons, the K*0(892) longitudinal polarization fraction, and the differential branching fraction are determined as a function of the dimuon invariant mass squared. The measurements are among the most precise to date and are in good agreement with standard model predictions.

0 data tables match query