Observation of four top quark production in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 847 (2023) 138290, 2023.
Inspire Record 2661880 DOI 10.17182/hepdata.138420

The observation of the production of four top quarks in proton-proton collisions is reported, based on a data sample collected by the CMS experiment at a center-of-mass energy of 13 TeV in 2016-2018 at the CERN LHC and corresponding to an integrated luminosity of 138 fb$^{-1}$. Events with two same-sign, three, or four charged leptons (electrons and muons) and additional jets are analyzed. Compared to previous results in these channels, updated identification techniques for charged leptons and jets originating from the hadronization of b quarks, as well as a revised multivariate analysis strategy to distinguish the signal process from the main backgrounds, lead to an improved expected signal significance of 4.9 standard deviations above the background-only hypothesis. Four top quark production is observed with a significance of 5.6 standard deviations, and its cross section is measured to be 17.7 $^{+3.7}_{-3.5}$ (stat) $^{+2.3}_{-1.9}$ (syst) fb, in agreement with the available standard model predictions.

0 data tables match query

Version 2
Inclusive and differential cross section measurements of $\mathrm{t\bar{t}b\bar{b}}$ production in the lepton+jets channel at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-TOP-22-009, 2023.
Inspire Record 2703254 DOI 10.17182/hepdata.138416

Measurements of inclusive and normalized differential cross sections of the associated production of top quark-antiquark and bottom quark-antiquark pairs, ttbb, are presented. The results are based on data from proton-proton collisions collected by the CMS detector at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. The cross sections are measured in the lepton+jets decay channel of the top quark pair, using events containing exactly one isolated electron or muon and at least five jets. Measurements are made in four fiducial phase space regions, targeting different aspects of the ttbb process. Distributions are unfolded to the particle level through maximum likelihood fits, and compared with predictions from several event generators. The inclusive cross section measurements of this process in the fiducial phase space regions are the most precise to date. In most cases, the measured inclusive cross sections exceed the predictions with the chosen generator settings. The only exception is when using a particular choice of dynamic renormalization scale, $\mu_\mathrm{R}=\frac{1}{2} \prod_{i=\mathrm{t, \bar{t}, b, \bar{b}}} m_{\mathrm{T},i}^{1/4}$, where $m_{\mathrm{T},i}^2=m_i^2+p^2_{\mathrm{T},i}$ are the transverse masses of top and bottom quarks. The differential cross sections show varying degrees of compatibility with the theoretical predictions, and none of the tested generators with the chosen settings simultaneously describe all the measured distributions.

0 data tables match query

Measurement of the $\mathrm{t\bar{t}}$ charge asymmetry in events with highly Lorentz-boosted top quarks in pp collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Lett.B 846 (2023) 137703, 2023.
Inspire Record 2132366 DOI 10.17182/hepdata.127992

The measurement of the charge asymmetry in top quark pair events with highly Lorentz-boosted top quarks decaying to a single lepton and jets is presented. The analysis is performed using proton-proton collisions at $\sqrt{s}$ = 13 TeV with the CMS detector at the LHC and corresponding to an integrated luminosity of 138 fb$^{-1}$. The selection is optimized for top quarks produced with large Lorentz boosts, resulting in nonisolated leptons and overlapping jets. The top quark charge asymmetry is measured for events with a $\mathrm{t\bar{t}}$ invariant mass larger than 750 GeV and corrected for detector and acceptance effects using a binned maximum likelihood fit. The measured top quark charge asymmetry of (0.42 $_{-0.69}^{+0.64}$)% is in good agreement with the standard model prediction at next-to-next-to-leading order in quantum chromodynamic perturbation theory with next-to-leading-order electroweak corrections. The result is also presented for two invariant mass ranges, 750-900 and $\gt$ 900 GeV.

0 data tables match query

Measurement of the jet mass distribution and top quark mass in hadronic decays of boosted top quarks in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Eur.Phys.J.C 83 (2023) 560, 2023.
Inspire Record 2175946 DOI 10.17182/hepdata.130712

A measurement of the jet mass distribution in hadronic decays of Lorentz-boosted top quarks is presented. The measurement is performed in the lepton+jets channel of top quark pair production ($\mathrm{t\bar{t}}$) events, where the lepton is an electron or muon. The products of the hadronic top quark decay are reconstructed using a single large-radius jet with transverse momentum greater than 400 GeV. The data were collected with the CMS detector at the LHC in proton-proton collisions and correspond to an integrated luminosity of 138 fb$^{-1}$. The differential $\mathrm{t\bar{t}}$ production cross section as a function of the jet mass is unfolded to the particle level and is used to extract the top quark mass. The jet mass scale is calibrated using the hadronic W boson decay within the large-radius jet. The uncertainties in the modelling of the final state radiation are reduced by studying angular correlations in the jet substructure. These developments lead to a significant increase in precision, and a top quark mass of 173.06 $\pm$ 0.84 GeV.

0 data tables match query

Measurement of the top quark mass using a profile likelihood approach with the lepton+jets final states in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Eur.Phys.J.C 83 (2023) 963, 2023.
Inspire Record 2629755 DOI 10.17182/hepdata.127993

The mass of the top quark is measured in 36.3 fb$^{-1}$ of LHC proton-proton collision data collected with the CMS detector at $\sqrt{s}$ = 13 TeV. The measurement uses a sample of top quark pair candidate events containing one isolated electron or muon and at least four jets in the final state. For each event, the mass is reconstructed from a kinematic fit of the decay products to a top quark pair hypothesis. A profile likelihood method is applied using up to four observables to extract the top quark mass. The top quark mass is measured to be 171.77 $\pm$ 0.37 GeV. This approach significantly improves the precision over previous measurements.

0 data tables match query

Version 2
Measurement of the top quark pole mass using $\mathrm{t\bar{t}}$+jet events in the dilepton final state in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 07 (2023) 077, 2023.
Inspire Record 2106483 DOI 10.17182/hepdata.127990

A measurement of the top quark pole mass $m_\mathrm{t}^\text{pole}$ in events where a top quark-antiquark pair ($\mathrm{t\bar{t}}$) is produced in association with at least one additional jet ($\mathrm{t\bar{t}}$+jet) is presented. This analysis is performed using proton-proton collision data at $\sqrt{s}$ = 13 TeV collected by the CMS experiment at the CERN LHC, corresponding to a total integrated luminosity of 36.3 fb$^{-1}$. Events with two opposite-sign leptons in the final state (e$^+$e$^-$, $\mu^+\mu^-$, e$^\pm\mu^\mp$) are analyzed. The reconstruction of the main observable and the event classification are optimized using multivariate analysis techniques based on machine learning. The production cross section is measured as a function of the inverse of the invariant mass of the $\mathrm{t\bar{t}}$+jet system at the parton level using a maximum likelihood unfolding. Given a reference parton distribution function (PDF), the top quark pole mass is extracted using the theoretical predictions at next-to-leading order. For the ABMP16NLO PDF, this results in $m_\mathrm{t}^\text{pole}$ = 172.93 $\pm$ 1.36 GeV.

0 data tables match query

Measurement of the top quark mass in the all-jets final state at $\sqrt{s}=$ 13 TeV and combination with the lepton+jets channel

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 79 (2019) 313, 2019.
Inspire Record 1711672 DOI 10.17182/hepdata.89051

A top quark mass measurement is performed using 35.9 fb$^{-1}$ of LHC proton-proton collision data collected with the CMS detector at $\sqrt{s} =$ 13 TeV. The measurement uses the $\mathrm{t\overline{t}}$ all-jets final state. A kinematic fit is performed to reconstruct the decay of the $\mathrm{t\overline{t}}$ system and suppress the multijet background. Using the ideogram method, the top quark mass ($m_\mathrm{t}$) is determined, simultaneously constraining an additional jet energy scale factor (JSF). The resulting value of $m_\mathrm{t}$ = 172.34 $\pm$ 0.20 (stat+JSF) $\pm$ 0.70 (syst) GeV is in good agreement with previous measurements. In addition, a combined measurement that uses the $\mathrm{t\overline{t}}$ lepton+jets and all-jets final states is presented, using the same mass extraction method, and provides an $m_\mathrm{t}$ measurement of 172.26 $\pm$ 0.07 (stat+JSF) $\pm$ 0.61 (syst) GeV. This is the first combined $m_\mathrm{t}$ extraction from the lepton+jets and all-jets channels through a single likelihood function.

0 data tables match query

Measurement of the W boson helicity fractions in the decays of top quark pairs to lepton+jets final states produced in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 762 (2016) 512-534, 2016.
Inspire Record 1466294 DOI 10.17182/hepdata.74337

The W boson helicity fractions from top quark decays in t t-bar events are measured using data from proton-proton collisions at a centre-of-mass energy of 8 TeV. The data were collected in 2012 with the CMS detector at the LHC, corresponding to an integrated luminosity of 19.8 inverse femtobarns. Events are reconstructed with either one muon or one electron, along with four jets in the final state, with two of the jets being identified as originating from b quarks. The measured helicity fractions from both channels are combined, yielding F[0] = 0.681 +/- 0.012 (stat) +/- 0.023 (syst), F[L] = 0.323 +/- 0.008 (stat) +/- 0.014 (syst), and F[R] = -0.004 +/- 0.005 (stat) +/- 0.014 (syst) for the longitudinal, left-, and right-handed components of the helicity, respectively. These measurements of the W boson helicity fractions are the most accurate to date and they agree with the predictions from the standard model.

0 data tables match query

Search for anomalous Wtb couplings and flavour-changing neutral currents in t-channel single top quark production in pp collisions at sqrt(s) = 7 and 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 02 (2017) 028, 2017.
Inspire Record 1491379 DOI 10.17182/hepdata.77022

Single top quark events produced in the t channel are used to set limits on anomalous Wtb couplings and to search for top quark flavour-changing neutral current (FCNC) interactions. The data taken with the CMS detector at the LHC in proton-proton collisions at sqrt(s) = 7 and 8 TeV correspond to integrated luminosities of 5.0 and 19.7 inverse femtobarns, respectively. The analysis is performed using events with one muon and two or three jets. A Bayesian neural network technique is used to discriminate between the signal and backgrounds, which are observed to be consistent with the standard model prediction. The 95% confidence level (CL) exclusion limits on anomalous right-handed vector, and left- and right-handed tensor Wtb couplings are measured to be |f[V]^R| < 0.16, |f[T]^L| < 0.057, and -0.049 < f[T]^R < 0.048, respectively. For the FCNC couplings kappa[tug] and kappa[tcg], the 95% CL upper limits on coupling strengths are |kappa[tug]|/Lambda < 4.1E-3 TeV-1 and |kappa[tcg]|/Lambda < 1.8E-2 TeV-1, where Lambda is the scale for new physics, and correspond to upper limits on the branching fractions of 2.0E-5 and 4.1E-4 for the decays t to ug and t to cg, respectively.

0 data tables match query

Measurement of the mass of the top quark in decays with a J/psi meson in pp collisions at 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 12 (2016) 123, 2016.
Inspire Record 1480862 DOI 10.17182/hepdata.75539

A first measurement of the top quark mass using the decay channel t to (W to l nu) (b to J/psi + X to mu+ mu- + X) is presented. The analysis uses events selected from the proton-proton collisions recorded with the CMS detector at the LHC at a center-of-mass energy of 8 TeV. The data correspond to an integrated luminosity of 19.7 inverse femtobarns, with 666 t t-bar and single top quark candidate events containing a reconstructed J/psi candidate decaying into an oppositely-charged muon pair. The mass of the (J/psi + l) system, where l is an electron or a muon from W boson decay, is used to extract a top quark mass of 173.5 +/- 3.0 (stat) +/- 0.9 (syst) GeV.

0 data tables match query