Search for contact interactions and large extra dimensions in the dilepton mass spectra from proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 04 (2019) 114, 2019.
Inspire Record 1711231 DOI 10.17182/hepdata.89049

A search for nonresonant excesses in the invariant mass spectra of electron and muon pairs is presented. The analysis is based on data from proton-proton collisions at a center-of-mass energy of 13 TeV recorded by the CMS experiment in 2016, corresponding to a total integrated luminosity of 36 fb$^{-1}$. No significant deviation from the standard model is observed. Limits are set at 95% confidence level on energy scales for two general classes of nonresonant models. For a class of fermion contact interaction models, lower limits ranging from 20 to 32 TeV are set on the characteristic compositeness scale $\Lambda$. For the Arkani-Hamed, Dimopoulos, and Dvali model of large extra dimensions, the first results in the dilepton final state at 13 TeV are reported, and values of the ultraviolet cutoff parameter $\Lambda_\mathrm{T}$ below 6.9 TeV are excluded. A combination with recent CMS diphoton results improves this exclusion to $\Lambda_\mathrm{T}$ below 7.7 TeV, providing the most sensitive limits to date in nonhadronic final states.

0 data tables match query

Search for long-lived particles decaying into displaced jets in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 99 (2019) 032011, 2019.
Inspire Record 1704319 DOI 10.17182/hepdata.88880

A search for long-lived particles decaying into jets is presented. Data were collected with the CMS detector at the LHC from proton-proton collisions at a center-of-mass energy of 13 TeV in 2016, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The search examines the distinctive topology of displaced tracks and secondary vertices. The selected events are found to be consistent with standard model predictions. For a simplified model in which long-lived neutral particles are pair produced and decay to two jets, pair production cross sections larger than 0.2 fb are excluded at 95% confidence level for a long-lived particle mass larger than 1000 GeV and proper decay lengths between 3 and 130 mm. Several supersymmetry models with gauge-mediated supersymmetry breaking or $R$-parity violation, where pair-produced long-lived gluinos or top squarks decay to several final-state topologies containing displaced jets, are also tested. For these models, in the mass ranges above 200 GeV, gluino masses up to 2300-2400 GeV and top squark masses up to 1350-1600 GeV are excluded for proper decay lengths approximately between 10 and 100 mm. These are the most restrictive limits to date on these models.

0 data tables match query

Search for resonant and nonresonant Higgs boson pair production in the bblnulnu final state in proton-proton collisions at sqrt(s) = 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 01 (2018) 054, 2018.
Inspire Record 1615868 DOI 10.17182/hepdata.83195

Searches for resonant and nonresonant pair-produced Higgs bosons (HH) decaying respectively into ll nu nu, through either W or Z bosons, and bbbar are presented. The analyses are based on a sample of proton-proton collisions at sqrt(s) = 13 TeV, collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 35.9 inverse femtobarns. Data and predictions from the standard model are in agreement within uncertainties. For the standard model HH hypothesis, the data exclude at 95% confidence level a product of the production cross section and branching fraction larger than 72 fb, corresponding to 79 times the prediction, consistent with expectations. Constraints are placed on different scenarios considering anomalous couplings, which could affect the rate and kinematics of HH production. Upper limits at 95% confidence level are set on the production cross section of narrow-width spin-0 and spin-2 particles decaying to Higgs boson pairs, the latter produced with minimal gravity-like coupling.

0 data tables match query

Search for top squark pair production in pp collisions at sqrt(s)=13 TeV using single lepton events

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 10 (2017) 019, 2017.
Inspire Record 1605128 DOI 10.17182/hepdata.79417

A search for top squark pair production in pp collisions at sqrt(s) = 13 TeV is performed using events with a single isolated electron or muon, jets, and a large transverse momentum imbalance. The results are based on data collected in 2016 with the CMS detector at the LHC, corresponding to an integrated luminosity of 35.9 inverse femtobarns. No significant excess of events is observed above the expectation from standard model processes. Exclusion limits are set in the context of supersymmetric models of pair production of top squarks that decay either to a top quark and a neutralino or to a bottom quark and a chargino. Depending on the details of the model, we exclude top squarks with masses as high as 1120 GeV. Detailed information is also provided to facilitate theoretical interpretations in other scenarios of physics beyond the standard model.

0 data tables match query

Search for Supersymmetry in $pp$ Collisions at $\sqrt{s}=13\text{ }\text{ }\mathrm{TeV}$ in the Single-Lepton Final State Using the Sum of Masses of Large-Radius Jets

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 119 (2017) 151802, 2017.
Inspire Record 1599402 DOI 10.17182/hepdata.79414

Results are reported from a search for supersymmetric particles in proton-proton collisions in the final state with a single lepton; multiple jets, including at least one b-tagged jet; and large missing transverse momentum. The search uses a sample of proton-proton collision data at sqrt(s) = 13 TeV recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 35.9 inverse femtobarns. The observed event yields in the signal regions are consistent with those expected from standard model backgrounds. The results are interpreted in the context of simplified models of supersymmetry involving gluino pair production, with gluino decay into either on- or off-mass-shell top squarks. Assuming that the top squarks decay into a top quark plus a stable, weakly interacting neutralino, scenarios with gluino masses up to about 1.9 TeV are excluded at 95% confidence level for neutralino masses up to about 1 TeV.

0 data tables match query

Search for a heavy composite Majorana neutrino in the final state with two leptons and two quarks at sqrt(s) = 13 TeV

The CMS collaboration Sirunyan, A.M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 775 (2017) 315-337, 2017.
Inspire Record 1607793 DOI 10.17182/hepdata.80512

A search for physics beyond the standard model in the final state with two same-flavour leptons (electrons or muons) and two quarks produced in proton-proton collisions at sqrt(s) = 13 TeV is presented. The data were recorded by the CMS experiment at the CERN LHC and correspond to an integrated luminosity of 2.3 inverse femtobarns. The observed data are in good agreement with the standard model background prediction. The results of the measurement are interpreted in the framework of a recently proposed model in which a heavy Majorana neutrino, N(l), stems from a composite-fermion scenario. Exclusion limits are set for the first time on the mass of the heavy composite Majorana neutrino, m[N(l)], and the compositeness scale Lambda. For the case m[N(l)] = Lambda, the existence of N(e) (N(mu)) is excluded for masses up to 4.60 (4.70) TeV at 95% confidence level.

0 data tables match query

Search for supersymmetry in pp collisions at sqrt(s) = 13 TeV in the single-lepton final state using the sum of masses of large-radius jets

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 08 (2016) 122, 2016.
Inspire Record 1459054 DOI 10.17182/hepdata.77195

Results are reported from a search for supersymmetric particles in proton-proton collisions in the final state with a single, high transverse momentum lepton; multiple jets, including at least one b-tagged jet; and large missing transverse momentum. The data sample corresponds to an integrated luminosity of 2.3 inverse femtobarns at sqrt(s) = 13 TeV, recorded by the CMS experiment at the LHC. The search focuses on processes leading to high jet multiplicities, such as gluino pair production with gluinos to t t-bar neutralino[1]. The quantity M[J], defined as the sum of the masses of the large-radius jets in the event, is used in conjunction with other kinematic variables to provide discrimination between signal and background and as a key part of the background estimation method. The observed event yields in the signal regions in data are consistent with those expected for standard model backgrounds, estimated from control regions in data. Exclusion limits are obtained for a simplified model corresponding to gluino pair production with three-body decays into top quarks and neutralinos. Gluinos with a mass below 1600 GeV are excluded at a 95% confidence level for scenarios with low neutralino[1] mass, and neutralinos with a mass below 800 GeV are excluded for a gluino mass of about 1300 GeV. For models with two-body gluino decays producing on-shell top squarks, the excluded region is only weakly sensitive to the top squark mass.

0 data tables match query

Version 2
Search for a light charged Higgs boson decaying to a W boson and a CP-odd Higgs boson in final states with e$\mu\mu$ or $\mu\mu\mu$ in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 123 (2019) 131802, 2019.
Inspire Record 1735729 DOI 10.17182/hepdata.89938

A search for a light charged Higgs boson (H$^+$) decaying to a W boson and a CP-odd Higgs boson (A) in final states with e$\mu\mu$ or $\mu\mu\mu$ is performed using data from pp collisions at $\sqrt{s}=$ 13 TeV, recorded by the CMS detector at the LHC and corresponding to an integrated luminosity of 35.9 fb$^{-1}$. In this search, it is assumed that the H$^+$ boson is produced in decays of top quarks, and the A boson decays to two oppositely charged muons. The presence of signals for H$^+$ boson masses between 100 and 160 GeV and A boson masses between 15 and 75 GeV is investigated. No evidence for the production of the H$^+$ boson is found. Upper limits at 95% confidence level are obtained on the combined branching fraction for the decay chain t $\to$ bH$^+$ $\to$ bW$^+$A $\to$ bW$^+\mu^+\mu^-$, of 1.9 $\times$ 10$^{-6}$ to 8.6 $\times$ 10$^{-6}$, depending on the masses of the H$^+$ and A bosons. These are the first limits for these decay modes of the H$^+$ and A bosons.

0 data tables match query

Search for supersymmetry in proton-proton collisions at 13 TeV in final states with jets and missing transverse momentum

The CMS collaboration Collaboration, The Cms ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 10 (2019) 244, 2019.
Inspire Record 1749379 DOI 10.17182/hepdata.90835

Results are reported from a search for supersymmetric particles in the final state with multiple jets and large missing transverse momentum. The search uses a sample of proton-proton collisions at $\sqrt{s} =$ 13 TeV collected with the CMS detector in 2016-2018, corresponding to an integrated luminosity of 137 fb$^{-1}$, representing essentially the full LHC Run 2 data sample. The analysis is performed in a four-dimensional search region defined in terms of the number of jets, the number of tagged bottom quark jets, the scalar sum of jet transverse momenta, and the magnitude of the vector sum of jet transverse momenta. No significant excess in the event yield is observed relative to the expected background contributions from standard model processes. Limits on the pair production of gluinos and squarks are obtained in the framework of simplified models for supersymmetric particle production and decay processes. Assuming the lightest supersymmetric particle to be a neutralino, lower limits on the gluino mass as large as 2000 to 2310 GeV are obtained at 95% confidence level, while lower limits on the squark mass as large as 1190 to 1630 GeV are obtained, depending on the production scenario.

0 data tables match query

Search for $R$-parity violating supersymmetry in pp collisions at $\sqrt{s} = $ 13 TeV using b jets in a final state with a single lepton, many jets, and high sum of large-radius jet masses

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 783 (2018) 114-139, 2018.
Inspire Record 1644901 DOI 10.17182/hepdata.81002

Results are reported from a search for physics beyond the standard model in proton-proton collisions at a center-of-mass energy of $\sqrt{s} = $ 13 TeV. The search uses a signature of a single lepton, large jet and bottom quark jet multiplicities, and high sum of large-radius jet masses, without any requirement on the missing transverse momentum in an event. The data sample corresponds to an integrated luminosity of 35.9 fb$^{-1}$ recorded by the CMS experiment at the LHC. No significant excess beyond the prediction from standard model processes is observed. The results are interpreted in terms of upper limits on the production cross section for $R$-parity violating supersymmetric extensions of the standard model using a benchmark model of gluino pair production, in which each gluino decays promptly via $ {\mathrm{\widetilde{g}}} \rightarrow \mathrm{t} \mathrm{b} \mathrm{s} $. Gluinos with a mass below 1610 GeV are excluded at 95% confidence level.

0 data tables match query

Search for new neutral Higgs bosons through the H$\to$ ZA $\to \ell^{+}\ell^{-} \mathrm{b\bar{b}}$ process in pp collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 03 (2020) 055, 2020.
Inspire Record 1764795 DOI 10.17182/hepdata.90710

This paper reports on a search for an extended scalar sector of the standard model, where a new CP-even (odd) boson decays to a Z boson and a lighter CP-odd (even) boson, and the latter further decays to a b quark pair. The Z boson is reconstructed via its decays to electron or muon pairs. The analysed data were recorded in proton-proton collisions at a center-of-mass energy $\sqrt{s} = $ 13 TeV, collected by the CMS experiment at the LHC during 2016, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. Data and predictions from the standard model are in agreement within the uncertainties. Upper limits at 95% confidence level are set on the production cross section times branching fraction, with masses of the new bosons up to 1000 GeV. The results are interpreted in the context of the two-Higgs-doublet model.

0 data tables match query

Search for nonresonant Higgs boson pair production in the $\mathrm{b\overline{b}b\overline{b}}$ final state at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 04 (2019) 112, 2019.
Inspire Record 1700771 DOI 10.17182/hepdata.89407

Results of a search for nonresonant production of Higgs boson pairs, with each Higgs boson decaying to a $\mathrm{b\overline{b}}$ pair are presented. This search uses data from proton-proton collisions at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{-1}$, collected by the CMS detector at the LHC. No signal is observed, and a 95% confidence level upper limit of 847 fb is set on the cross section for standard model nonresonant Higgs boson pair production times the squared branching fraction of the Higgs boson decay to a $\mathrm{b\overline{b}}$ pair. The same signature is studied, and upper limits are set, in the context of models of physics beyond the standard model that predict modified couplings of the Higgs boson.

0 data tables match query

Measurements of pp $\to$ ZZ production cross sections and constraints on anomalous triple gauge couplings at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 81 (2021) 200, 2021.
Inspire Record 1814609 DOI 10.17182/hepdata.101183

The production of Z boson pairs in proton-proton (pp) collisions, pp $\to$ (Z/$\gamma^*$)(Z/$\gamma^*$) $\to$ 2$\ell$ 2$\ell'$, where $\ell,\ell'$ = e or $\mu$, is studied at a center-of-mass energy of 13 TeV with the CMS detector at the CERN LHC. The data sample corresponds to an integrated luminosity of 137 fb$^{-1}$, collected during 2016-2018. The ZZ production cross section, $\sigma_{\text{tot}}$ (pp $\to$ ZZ) = 17.2 $\pm$ 0.3 (stat) $\pm$ 0.5 (syst) $\pm$ 0.4 (theo) $\pm$ 0.3 (lumi) pb, measured for events with two pairs of opposite-sign, same-flavor leptons produced in the mass region 60 $\lt$ $m_{\ell^+\ell^-}$ $\lt $ 120 GeV is consistent with standard model predictions. Differential cross sections are also measured and agree with theoretical predictions. The invariant mass distribution of the four-lepton system is used to set limits on anomalous ZZZ and ZZ$\gamma$ couplings.

0 data tables match query

Search for supersymmetry in proton-proton collisions at $\sqrt{s} =$ 13 TeV in events with high-momentum Z bosons and missing transverse momentum

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 09 (2020) 149, 2020.
Inspire Record 1811111 DOI 10.17182/hepdata.96235

A search for new physics in events with two highly Lorentz-boosted Z bosons and large missing transverse momentum is presented. The analyzed proton-proton collision data, corresponding to an integrated luminosity of 137 fb$^{-1}$, were recorded at $\sqrt{s} =$ 13 TeV by the CMS experiment at the CERN LHC. The search utilizes the substructure of jets with large radius to identify quark pairs from Z boson decays. Backgrounds from standard model processes are suppressed by requirements on the jet mass and the missing transverse momentum. No significant excess in the event yield is observed beyond the number of background events expected from the standard model. For a simplified supersymmetric model in which the Z bosons arise from the decay of gluinos, an exclusion limit of 1920 GeV on the gluino mass is set at 95% confidence level. This is the first search for beyond-standard-model production of pairs of boosted Z bosons plus large missing transverse momentum.

0 data tables match query

Search for flavor-changing neutral current interactions of the top quark and Higgs boson in final states with two photons in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, A. ; Adam, W. ; Andrejkovic, J.W. ; et al.
Phys.Rev.Lett. 129 (2022) 032001, 2022.
Inspire Record 2111572 DOI 10.17182/hepdata.105999

Proton-proton interactions resulting in final states with two photons are studied in a search for the signature of flavor-changing neutral current interactions of top quarks (t) and Higgs bosons (H). The analysis is based on data collected at a center-of-mass energy of 13 TeV with the CMS detector at the LHC, corresponding to an integrated luminosity of 137 fb$^{-1}$. No significant excess above the background prediction is observed. Upper limits on the branching fractions ($\mathcal{B}$) of the top quark decaying to a Higgs boson and an up (u) or charm quark (c) are derived through a binned fit to the diphoton invariant mass spectrum. The observed (expected) 95% confidence level upper limits are found to be 0.019 (0.031)% for $\mathcal B$(t $\to$ Hu) and 0.073 (0.051)% for $\mathcal{B}$(t $\to$ Hc). These are the strictest upper limits yet determined.

0 data tables match query

Search for a heavy vector resonance decaying to a Z boson and a Higgs boson in proton-proton collisions at $\sqrt{s} = $ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 81 (2021) 688, 2021.
Inspire Record 1846987 DOI 10.17182/hepdata.101374

A search is presented for a heavy vector resonance decaying into a Z boson and the standard model Higgs boson, where the Z boson is identified through its leptonic decays to electrons, muons, or neutrinos, and the Higgs boson is identified through its hadronic decays. The search is performed in a Lorentz-boosted regime and is based on data collected from 2016 to 2018 at the CERN LHC, corresponding to an integrated luminosity of 137 fb$^{-1}$. Upper limits are derived on the production of a narrow heavy resonance Z', and a mass below 3.5 and 3.7 TeV is excluded at 95% confidence level in models where the heavy vector boson couples exclusively to fermions and to bosons, respectively. These are the most stringent limits placed on the Heavy Vector Triplet Z' model to date. If the heavy vector boson couples exclusively to standard model bosons, upper limits on the product of the cross section and branching fraction are set between 23 and 0.3 fb for a Z' mass between 0.8 and 4.6 TeV, respectively. This is the first limit set on a heavy vector boson coupling exclusively to standard model bosons in its production and decay.

0 data tables match query

Search for strongly interacting massive particles generating trackless jets in proton-proton collisions at $\sqrt{s} = $ 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Bergauer, Thomas ; et al.
Eur.Phys.J.C 82 (2022) 213, 2022.
Inspire Record 1864485 DOI 10.17182/hepdata.101628

A search for dark matter in the form of strongly interacting massive particles (SIMPs) using the CMS detector at the LHC is presented. The SIMPs would be produced in pairs that manifest themselves as pairs of jets without tracks. The energy fraction of jets carried by charged particles is used as a key discriminator to suppress efficiently the large multijet background, and the remaining background is estimated directly from data. The search is performed using proton-proton collision data corresponding to an integrated luminosity of 16.1 fb$^{-1}$, collected with the CMS detector in 2016. No significant excess of events is observed above the expected background. For the simplified dark matter model under consideration, SIMPs with masses up to 100 GeV are excluded and further sensitivity is explored towards higher masses.

0 data tables match query

A search for bottom-type, vector-like quark pair production in a fully hadronic final state in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 102 (2020) 112004, 2020.
Inspire Record 1812970 DOI 10.17182/hepdata.99690

A search is described for the production of a pair of bottom-type vector-like quarks (VLQs), each decaying into a b or $\mathrm{\bar{b}}$ quark and either a Higgs or a Z boson, with a mass greater than 1000 GeV. The analysis is based on data from proton-proton collisions at a 13 TeV center-of-mass energy recorded at the CERN LHC, corresponding to a total integrated luminosity of 137 fb$^{-1}$. As the predominant decay modes of the Higgs and Z bosons are to a pair of quarks, the analysis focuses on final states consisting of jets resulting from the six quarks produced in the events. Since the two jets produced in the decay of a highly Lorentz-boosted Higgs or Z boson can merge to form a single jet, nine independent analyses are performed, categorized by the number of observed jets and the reconstructed event mode. No signal in excess of the expected background is observed. Lower limits are set on the VLQ mass at 95% confidence level equal to 1570 GeV in the case where the VLQ decays exclusively to a b quark and a Higgs boson, 1390 GeV for when it decays exclusively to a b quark and a Z boson, and 1450 GeV for when it decays equally in these two modes. These limits represent significant improvements over the previously published VLQ limits.

0 data tables match query

Search for top squark production in fully-hadronic final states in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 104 (2021) 052001, 2021.
Inspire Record 1849522 DOI 10.17182/hepdata.103065

A search for production of the supersymmetric partners of the top quark, top squarks, is presented. The search is based on proton-proton collision events containing multiple jets, no leptons, and large transverse momentum imbalance. The data were collected with the CMS detector at the CERN LHC at a center-of-mass energy of 13 TeV, and correspond to an integrated luminosity of 137 fb$^{-1}$. The targeted signal production scenarios are direct and gluino-mediated top squark production, including scenarios in which the top squark and neutralino masses are nearly degenerate. The search utilizes novel algorithms based on deep neural networks that identify hadronically decaying top quarks and W bosons, which are expected in many of the targeted signal models. No statistically significant excess of events is observed relative to the expectation from the standard model, and limits on the top squark production cross section are obtained in the context of simplified supersymmetric models for various production and decay modes. Exclusion limits as high as 1310 GeV are established at the 95% confidence level on the mass of the top squark for direct top squark production models, and as high as 2260 GeV on the mass of the gluino for gluino-mediated top squark production models. These results represent a significant improvement over the results of previous searches for supersymmetry by CMS in the same final state.

0 data tables match query

Search for new physics in the $\tau$ lepton plus missing transverse momentum final state in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, A. ; Adam, W. ; Andrejkovic, J.W. ; et al.
JHEP 09 (2023) 051, 2023.
Inspire Record 2626189 DOI 10.17182/hepdata.135472

A search for physics beyond the standard model (SM) in the final state with a hadronically decaying tau lepton and a neutrino is presented. This analysis is based on data recorded by the CMS experiment from proton-proton collisions at a center-of-mass energy of 13 TeV at the LHC, corresponding to a total integrated luminosity of 138 fb$^{=1}$. The transverse mass spectrum is analyzed for the presence of new physics. No significant deviation from the SM prediction is observed. Limits are set on the production cross section of a W' boson decaying into a tau lepton and a neutrino. Lower limits are set on the mass of the sequential SM-like heavy charged vector boson and the mass of a quantum black hole. Upper limits are placed on the couplings of a new boson to the SM fermions. Constraints are put on a nonuniversal gauge interaction model and an effective field theory model. For the first time, upper limits on the cross section of $t$-channel leptoquark (LQ) exchange are presented. These limits are translated into exclusion limits on the LQ mass and on its coupling in the $t$-channel. The sensitivity of this analysis extends into the parameter space of LQ models that attempt to explain the anomalies observed in B meson decays. The limits presented for the various interpretations are the most stringent to date. Additionally, a model-independent limit is provided.

0 data tables match query