Nuclear Dependence of Dimuon Production at 800-GeV

Alde, D.M. ; Baer, H.W. ; Carey, T.A. ; et al.
Phys.Rev.Lett. 64 (1990) 2479-2482, 1990.
Inspire Record 303588 DOI 10.17182/hepdata.19997

A precise measurement of the atomic-mass dependence of dimuon production induced by 800-GeV protons is reported. Over 450 000 muon pairs with dimuon mass M≥4 GeV were recorded from targets of H2, C, Ca, Fe, and W. The ratio of dimuon yield per nucleon for nuclei versus H2, R=YA/Y2H, is sensitive to modifications of the antiquark sea in nuclei. No nuclear dependence of this ratio is observed over the range of target-quark momentum fraction 0.1<xt<0.3. For xt<0.1 the ratio is slightly less than unity for the heavy nuclei. These results are compared with predictions of models of the European Muon Collaboration effect.

0 data tables match query

Measurement of Upsilon production for p+p and p+d interactions at 800-GeV

The NuSea collaboration Zhu, L.Y. ; Reimer, Paul E. ; Mueller, B.A. ; et al.
Phys.Rev.Lett. 100 (2008) 062301, 2008.
Inspire Record 763967 DOI 10.17182/hepdata.42715

We report a high statistics measurement of Upsilon production with an 800 GeV/c proton beam on hydrogen and deuterium targets. The dominance of the gluon-gluon fusion process for Upsilon production at this energy implies that the cross section ratio, $\sigma (p + d \to \Upsilon) / 2\sigma (p + p\to \Upsilon)$, is sensitive to the gluon content in the neutron relative to that in the proton. Over the kinematic region 0 < x_F < 0.6, this ratio is found to be consistent with unity, in striking contrast to the behavior of the Drell-Yan cross section ratio $\sigma(p+d)_{DY}/2\sigma(p+p)_{DY}$. This result shows that the gluon distributions in the proton and neutron are very similar. The Upsilon production cross sections are also compared with the p+d and p+Cu cross sections from earlier measurements.

0 data tables match query