A Measurement of sigma B (W ---> e neutrino) and sigma B (Z0 ---> e+ e-) in anti-p p collisions at s**(1/2) = 1800-GeV

The CDF collaboration Abe, F. ; Amidei, D. ; Apollinari, G. ; et al.
Phys.Rev.D 44 (1991) 29-52, 1991.
Inspire Record 302820 DOI 10.17182/hepdata.42696

An analysis of high-transverse-momentum electrons using data from the Collider Detector at Fermilab (CDF) of p¯p collisions at s=1800 GeV yields values of the production cross section times branching ratio for W and Z0 bosons of σ(p¯p→WX→eνX)=2.19±0.04(stat)±0.21(syst) nb and σ(p¯p→Z0X→e+e−X)=0.209±0.013(stat)±0.017(syst) nb. Detailed descriptions of the CDF electron identification, background, efficiency, and acceptance are included. Theoretical predictions of the cross sections that include a mass for the top quark larger than the W mass, current values of the W and Z0 masses, and higher-order QCD corrections are in good agreement with these measured values.

0 data tables match query

A Precision measurement of the prompt photon cross-section in p anti-p collisions at S**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, M.G. ; Amidei, D. ; et al.
Phys.Rev.Lett. 73 (1994) 2662-2666, 1994.
Inspire Record 375582 DOI 10.17182/hepdata.19680

A prompt photon cross section measurement from the Collider Detector at Fermilab experiment is presented. Detector and trigger upgrades, as well as 6 times the integrated luminosity compared with our previous publication, have contributed to a much more precise measurement and extended PT range. As before, QCD calculations agree qualitatively with the measured cross section, but the data has a steeper slope than the calculations.

0 data tables match query

A Prompt photon cross-section measurement in anti-p p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, M. ; Amidei, D. ; et al.
Phys.Rev.D 48 (1993) 2998-3025, 1993.
Inspire Record 353026 DOI 10.17182/hepdata.22677

The first prompt photon measurement from the CDF experiment at the Fermilab pp¯ Collider is presented. Two independent methods are used to measure the cross section: one for high transverse momentum (PT) and one for lower PT. Comparisons to various theoretical calculations are shown. The cross section agrees qualitatively with QCD calculations but has a steeper slope at low PT.

0 data tables match query

Azimuthal anisotropy of charged particles with transverse momentum up to 100 GeV in PbPb collisions at sqrt(s[NN]) = 5.02 TeV

The CMS collaboration Sirunyan, A.M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 776 (2018) 195-216, 2018.
Inspire Record 1511868 DOI 10.17182/hepdata.77603

The Fourier coefficients v[2] and v[3] characterizing the anisotropy of the azimuthal distribution of charged particles produced in PbPb collisions at sqrt(s[NN]) = 5.02 TeV are measured with data collected by the CMS experiment. The measurements cover a broad transverse momentum range, 1 < pT < 100 GeV. The analysis focuses on pT > 10 GeV range, where anisotropic azimuthal distributions should reflect the path-length dependence of parton energy loss in the created medium. Results are presented in several bins of PbPb collision centrality, spanning the 60% most central events. The v[2] coefficient is measured with the scalar product and the multiparticle cumulant methods, which have different sensitivities to the initial-state fluctuations. The values of both methods remain positive up to pT of about 60-80 GeV, in all examined centrality classes. The v[3] coefficient, only measured with the scalar product method, tends to zero for pT greater than or equal to 20 GeV. Comparisons between theoretical calculations and data provide new constraints on the path-length dependence of parton energy loss in heavy ion collisions and highlight the importance of the initial-state fluctuations.

0 data tables match query

Azimuthal anisotropy of dijet events in PbPb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 07 (2023) 139, 2023.
Inspire Record 2165916 DOI 10.17182/hepdata.130961

The path-length dependent parton energy loss within the dense partonic medium created in lead-lead collisions at a nucleon-nucleon center-of-mass energy of $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV is studied by determining the azimuthal anisotropies for dijets with high transverse momentum. The data were collected by the CMS experiment in 2018 and correspond to an integrated luminosity of 1.69 nb$^{-1}$. For events containing back-to-back jets, correlations in relative azimuthal angle and pseudorapidity ($\eta$) between jets and hadrons, and between two hadrons, are constructed. The anisotropies are expressed as the Fourier expansion coefficients $v_n$, $n = $ 2-4 of these azimuthal distributions. The dijet $v_n$ values are extracted from long-range (1.5 $\lt$$\vert\Delta\eta\vert$$\lt$ 2.5) components of these correlations, which suppresses the background contributions from jet fragmentation processes. Positive dijet $v_2$ values are observed which increase from central to more peripheral events, while the $v_3$ and $v_4$ values are consistent with zero within experimental uncertainties.

0 data tables match query

Azimuthal correlations within exclusive dijets with large momentum transfer in photon-lead collisions

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Bergauer, Thomas ; et al.
Phys.Rev.Lett. 131 (2023) 051901, 2023.
Inspire Record 2075414 DOI 10.17182/hepdata.95235

The structure of nucleons is multidimensional and depends on the transverse momenta, spatial geometry, and polarization of the constituent partons. Such a structure can be studied using high-energy photons produced in ultraperipheral heavy-ion collisions. The first measurement of the azimuthal angular correlations of exclusively produced events with two jets in photon-lead interactions at large momentum transfer is presented, a process that is considered to be sensitive to the underlying nuclear gluon polarization. This study uses a data sample of ultraperipheral lead-lead collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV, corresponding to an integrated luminosity of 0.38 nb$^{-1}$, collected with the CMS experiment at the LHC. The measured second harmonic of the correlation between the sum and difference of the two jet momenta is found to be positive, and rising, as the dijet momentum increases. A well-tuned model that has been successful at describing a wide range of proton scattering data from the HERA experiments fails to describe the observed correlations, suggesting the presence of gluon polarization effects.

0 data tables match query

Branching ratio measurements of exclusive B+ decays to charmonium with the Collider Detector at Fermilab

The CDF collaboration Acosta, D. ; Affolder, T. ; Akimoto, H. ; et al.
Phys.Rev.D 66 (2002) 052005, 2002.
Inspire Record 588090 DOI 10.17182/hepdata.56734

We report on measurements of the branching ratios of the decays B+→χc10(1P)K+ and B+→J/ψK+π+π−, where χc10(1P)→J/ψγ and J/ψ→μ+μ− in pp¯ collisions at s=1.8TeV. Using a data sample from an integrated luminosity of 110pb−1 collected by the Collider Detector at Fermilab we measure the branching ratios to be BR(B+→χc10(1P)K+)=15.5±5.4(stat)±1.5(syst)±1.3(br)×10−4 and BR(B+→J/ψK+π+π−)=6.9±1.8(stat)±1.1(syst)±0.4(br)×10−4 where (br) is due to the finite precision on BR(B+→J/ψK+), BR(χc10(1P)→J/ψγ) is used to normalize the signal yield, and (syst) encompasses all other systematic uncertainties.

0 data tables match query

Charged particle multiplicity in jets in p anti-p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Affolder, T. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.Lett. 87 (2001) 211804, 2001.
Inspire Record 560273 DOI 10.17182/hepdata.42931

We report on a measurement of the mean charged-particle multiplicity of jets in dijet events with dijet masses in the range 80–630GeV/c2, produced at the Tevatron in pp¯ collisions with s=1.8TeV and recorded by the Collider Detector at Fermilab. The data are fit to perturbative-QCD calculations carried out in the framework of the modified leading log approximation and the hypothesis of local parton-hadron duality. The fit yields values for two parameters in that framework: the ratio of parton multiplicities in gluon and quark jets, $r≡N_{partons}^{g−jet} / N_{partons}^{q−jet} = 1.7 \pm 0.3$, and the ratio of the number of charged hadrons to the number of partons in a jet, $K_{LPHD}^{charged} ≡ N_{hadrons}^{charged} / N_{partons} = 0.57 \pm 0.11$.

0 data tables match query

Comparison of the isolated direct photon cross-sections in p anti-p collisions at s**(1/2) = 1.8-TeV and s**(1/2) = 0.63-TeV

The CDF collaboration Acosta, D. ; Affolder, T. ; Akimoto, H. ; et al.
Phys.Rev.D 65 (2002) 112003, 2002.
Inspire Record 581379 DOI 10.17182/hepdata.42882

We have measured the cross sections $d^2\sigma/dP_T d\eta$ for production of isolated direct photons in \pbarp collisions at two different center-of-mass energies, 1.8 TeV and 0.63 TeV, using the Collider Detector at Fermilab (CDF). The normalization of both data sets agree with the predictions of Quantum Chromodynamics (QCD) for photon transverse momentum ($P_T$) of 25 GeV/c, but the shapes versus photon $P_T$ do not. These shape differences lead to a significant disagreement in the ratio of cross sections in the scaling variable $x_T (\equiv 2P_T/\sqrt{s}$). This disagreement in the $x_T$ ratio is difficult to explain with conventional theoretical uncertainties such as scale dependence and parton distribution parameterizations.

0 data tables match query

Cross-section and heavy quark composition of gamma + muon events produced in p anti-p collisions

The CDF collaboration Affolder, T. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.D 65 (2002) 012003, 2002.
Inspire Record 557647 DOI 10.17182/hepdata.42881

We present a measurement of the cross section and the first measurement of the heavy flavor content of associated direct photon + muon events produced in hadronic collisions. These measurements come from a sample of 1.8 TeV ppbar collisions recorded with the Collider Detector at Fermilab. Quantum chromodynamics (QCD) predicts that these events are primarily due to Compton scattering process charm+gluon -> charm+photon, with the final state charm quark producing a muon. The cross section for events with a photon transverse momentum between 12 and 40 GeV/c is measured to be 46.8+-6.3+-7.5 pb, which is two standard deviations below the most recent theoretical prediction. A significant fraction of the events in the sample contain a final-state bottom quark. The ratio of charm to bottom production is measured to be 2.4+-1.2, in good agreement with QCD models.

0 data tables match query