Coherent production of Kπ systems observed in the excitation of 200-GeV/c positive kaons on nuclear targets has been analyzed, including both electromagnetic and strong contributions, to yield a new value for the radiative width for the process K*+(890)→K+γ of 51 ± 5 keV.
Using the Primakoff formalism, we have extracted the radiative decay width of the A + 2 (1310) produced in coherent interactions of 200 GeV/ c π + mesons in nuclear targets. The width obtained is 295 ± 60 keV, a value consistent with quark-model predictions.
Using the Primakoff formalism, we have extracted the radiative decay width of the K ∗+ (1430) produced in coherent interactions of 200 GeV/ c K + mesons in nuclear targets. The width obtained is 240 ± 45 keV, a value reasonably consistent with quark-model predictions.
We have measured the coherent nuclear production of π+ω systems at 202.5 GeV. This final state is dominated by the B+(1235) meson with a measured mass and full width of 1.271 ± 0.011 GeV and 0.232 ± 0.029 GeV, respectively. A radiative width of 230 ± 60 keV was extracted for the process B+(1235)→π+γ.
We present results from the initial run of Fermilab experiment E706. The data include incident π− and p beams at 500 GeV/c on Be and Cu targets, and span the kinematic ranges of transverse momentum and rapidity of 3.5≤pT≤10 GeV/c and −0.7≤yc.m.≤0.7, respectively. We have measured cross sections for π0 and direct-photon production, as well as the ηπ0 production ratio. From the data on Be and Cu, we have extracted the nuclear dependence of π0 production, parametrized as Aα. The cross sections are compared with next-to-leading-log QCD predictions for different choices of the QCD momentum scales and several sets of parton distribution functions.
Results are reported based on a study of 3114 π−p events at 205 GeV/c in the National Accelerator Laboratory 30-in. bubble chamber. The measured π−p total and elastic cross sections are 24.0 ± 0.5 and 3.0 ± 0.3 mb, respectively. The elastic differential cross section has a slope of 9.0 ± 0.7 GeV−2 for 0.03≤−t≤0.6 GeV2. The average charged-particle multiplicity for the inelastic events is 8.02 ± 0.12.
Measurements of the energy and t dependence of diffractive Jψ photoproduction are presented. A significant rise in the cross section over the energy range 60-300 GeV is observed. It is found that (30±4)% of the events are inelastic.
We have carried out a partial-wave analysis (PWA) of three-pion systems produced in the coherent dissociation of π+ mesons on nuclear targets. The data have been analyzed for copper and lead targets at an incident π+ energy of 202.5 GeV. This PWA provides further evidence for resonant contributions to JP=1+ and 0− waves at 3π masses below 1.5 GeV, which can be plausibly identified with A1 and π′ mesons. The contribution from electromagnetic production of the A2 has also been extracted, and an estimate for Coulomb production and radiative width of the A1 has been obtained.
We have carried out a systematic study of the coherent dissociation of pions into 3 pions using nuclear targets. The experiment was performed at Fermilab using a high resolution forward spectrometer. Data were taken with carbon, copper and lead targets at an incident momentum of 202.5 GeV/c. Results are presented on momentum transfers, 3-pion masses, and on the nuclearA-dependence of the production cross section.
We have measured the coherent nuclear production of low-mass K+ω systems in K+A collisions at 202.5 GeV. Results for carbon, copper, and lead targets are similar to those found for π+π+π− production in π+A reactions at the same energy.