Observation of s-channel production of single top quarks at the Tevatron

The CDF D0 collaborations Aaltonen, Timo Antero ; Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; et al.
Phys.Rev.Lett. 112 (2014) 231803, 2014.
Inspire Record 1282028 DOI 10.17182/hepdata.64717

We report the first observation of single-top-quark production in the s channel through the combination of the CDF and D0 measurements of the cross section in proton-antiproton collisions at a center-of-mass energy of 1.96 TeV. The data correspond to total integrated luminosities of up to 9.7 fb-1 per experiment. The measured cross section is $\sigma_s = 1.29^{+0.26}_{-0.24}$ pb. The probability of observing a statistical fluctuation of the background to a cross section of the observed size or larger is $1.8 \times 10^{-10}$, corresponding to a significance of 6.3 standard deviations for the presence of an s-channel contribution to the production of single-top quarks.

0 data tables match query

Measurement of the Isolated Prompt Photon Production Cross Section in $pp$ Collisions at $\sqrt{s} = 7$~TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M. ; Tumasyan, Armen ; et al.
Phys.Rev.Lett. 106 (2011) 082001, 2011.
Inspire Record 879403 DOI 10.17182/hepdata.63810
0 data tables match query

Measurement of Bose-Einstein Correlations in $pp$ Collisions at $\sqrt{s}=0.9$ and 7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M. ; Tumasyan, Armen ; et al.
JHEP 1105 (2011) 029, 2011.
Inspire Record 884808 DOI 10.17182/hepdata.60018
0 data tables match query

Search for Dijet Resonances in 7 TeV pp Collisions at CMS

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M. ; Tumasyan, Armen ; et al.
Phys.Rev.Lett. 105 (2010) 211801, 2010.
Inspire Record 871540 DOI 10.17182/hepdata.56737

A search for narrow resonances in the dijet mass spectrum is performed using data corresponding to an integrated luminosity of 2.9 inverse pb collected by the CMS experiment at the LHC. Upper limits at the 95% confidence level (CL) are presented on the product of the resonance cross section, branching fraction into dijets, and acceptance, separately for decays into quark-quark, quark-gluon, or gluon-gluon pairs. The data exclude new particles predicted in the following models at the 95% CL: string resonances, with mass less than 2.50 TeV, excited quarks, with mass less than 1.58 TeV, and axigluons, colorons, and E_6 diquarks, in specific mass intervals. This extends previously published limits on these models.

0 data tables match query

Upsilon Production Cross-Section in pp Collisions at $sqrt{s}=7$ TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M. ; Tumasyan, Armen ; et al.
Phys.Rev. D83 (2011) 112004, 2011.
Inspire Record 882871 DOI 10.17182/hepdata.57722

The Upsilon production cross section in proton-proton collisions at sqrt(s) = 7 TeV is measured using a data sample collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 3.1 +/- 0.3 inverse picobarns. Integrated over the rapidity range |y|<2, we find the product of the Upsilon(1S) production cross section and branching fraction to dimuons to be sigma(pp to Upsilon(1S) X) B(Upsilon(1S) to mu+ mu-) = 7.37 +/- 0.13^{+0.61}_{-0.42}\pm 0.81 nb, where the first uncertainty is statistical, the second is systematic, and the third is associated with the estimation of the integrated luminosity of the data sample. This cross section is obtained assuming unpolarized Upsilon(1S) production. If the Upsilon(1S) production polarization is fully transverse or fully longitudinal the cross section changes by about 20%. We also report the measurement of the Upsilon(1S), Upsilon(2S), and Upsilon(3S) differential cross sections as a function of transverse momentum and rapidity.

0 data tables match query

Search for supersymmetry in events with at least one photon, missing transverse momentum, and large transverse event activity in proton-proton collisions at $ \sqrt{s}=13 $ TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 1712 (2017) 142, 2017.
Inspire Record 1610629 DOI 10.17182/hepdata.79807

A search for physics beyond the standard model in final states with at least one photon, large transverse momentum imbalance, and large total transverse event activity is presented. Such topologies can be produced in gauge-mediated supersymmetry models in which pair-produced gluinos or squarks decay to photons and gravitinos via short-lived neutralinos. The data sample corresponds to an integrated luminosity of 35.9 inverse femtobarns of proton-proton collisions at sqrt(s) = 13 TeV recorded by the CMS experiment at the LHC in 2016. No significant excess of events above the expected standard model background is observed. The data are interpreted in simplified models of gluino and squark pair production, in which gluinos or squarks decay via neutralinos to photons. Gluino masses of up to 1.50-2.00 TeV and squark masses up to 1.30-1.65 TeV are excluded at 95% confidence level, depending on the neutralino mass and branching fraction.

0 data tables match query

Search for Charged Higgs Bosons Produced via Vector Boson Fusion and Decaying into a Pair of $W$ and $Z$ Bosons Using $pp$ Collisions at $\sqrt{s}=13\text{ }\text{ }\mathrm{TeV}$

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 119 (2017) 141802, 2017.
Inspire Record 1598467 DOI 10.17182/hepdata.80233

A search for charged Higgs bosons produced via vector boson fusion and decaying into W and Z bosons using proton-proton collisions at s=13  TeV is presented. The data sample corresponds to an integrated luminosity of 15.2  fb-1 collected with the CMS detector in 2015 and 2016. The event selection requires three leptons (electrons or muons), two jets with large pseudorapidity separation and high dijet mass, and missing transverse momentum. The observation agrees with the standard model prediction. Limits on the vector boson fusion production cross section times branching fraction for new charged physical states are reported as a function of mass from 200 to 2000 GeV and interpreted in the context of Higgs triplet models.

0 data tables match query

Relative modification of prompt $ {\psi\mathrm{(2S)}} $ and $\mathrm{J}/\psi $ yields from pp to PbPb collisions at ${\sqrt{s_{\mathrm{NN}}}} = $ 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett., 2016.
Inspire Record 1495840 DOI 10.17182/hepdata.77102

The relative modification of the prompt psi(2S) and J/psi yields from pp to PbPb collisions, at the center of mass energy of 5.02 TeV per nucleon pair, is presented. The analysis is based on pp and PbPb data samples collected by the CMS experiment at the LHC in 2015, corresponding to integrated luminosities of 28.0 inverse picobarns and 464 inverse microbarns, respectively. The double ratio of measured yields of prompt charmonia reconstructed through their decays into muon pairs, (N[psi(2S)]/N[J/psi])[PbPb]/ (N[psi(2S)]/N[J/psi])[pp], is determined as a function of PbPb collision centrality and charmonium transverse momentum pt, in two kinematic intervals: abs(y) < 1.6 covering 6.5 < pt < 30GeV/c and 1.6 < abs(y) < 2.4 covering 3 <pt< 30GeV/c. The centrality-integrated double ratios are 0.36 +/- 0.08 (stat) +/-0.05 (syst) in the first interval and 0.24 +/- 0.22 (stat) +/- 0.09 (syst) in the second. The double ratio is lower than unity in all the measured bins, suggesting that the psi(2S) yield is more suppressed than the J/psi yield in the explored phase space.

0 data tables match query

Search for anomalous couplings in boosted $\mathrm{ WW/WZ }\to\ell\nu\mathrm{ q \bar{q} }$ production in proton-proton collisions at $\sqrt{s} =$ 8 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett. B772 (2017) 21-42, 2017.
Inspire Record 1518145 DOI 10.17182/hepdata.78151

This Letter presents a search for new physics manifested as anomalous triple gauge boson couplings in WW and WZ diboson production in proton–proton collisions. The search is performed using events containing a W boson that decays leptonically and a W or Z boson whose decay products are merged into a single reconstructed jet. The data, collected at s=8 TeV with the CMS detector at the LHC, correspond to an integrated luminosity of 19 fb−1 . No evidence for anomalous triple gauge couplings is found and the following 95% confidence level limits are set on their values: λ ( [−0.011,0.011] ), Δκγ ( [−0.044,0.063] ), and Δg1Z ( [−0.0087,0.024] ). These limits are also translated into their effective field theory equivalents: cWWW/Λ2 ( [−2.7,2.7] TeV−2 ), cB/Λ2 ( [−14,17] TeV−2 ), and cW/Λ2 ( [−2.0,5.7] TeV−2 ).

0 data tables match query

Azimuthal anisotropy of charged particles with transverse momentum up to 100 GeV in PbPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
No Journal Information, 2017.
Inspire Record 1511868 DOI 10.17182/hepdata.77603

The Fourier coefficients v[2] and v[3] characterizing the anisotropy of the azimuthal distribution of charged particles produced in PbPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV are measured with data collected by the CMS experiment. The measurements cover a broad transverse momentum range, pt= 1-100 GeV. The analysis focuses on pt > 10 GeV range, where anisotropic azimuthal distributions should reflect the path-length dependence of parton energy loss in the created medium. Results are presented in several bins of PbPb collision centrality, spanning the 60x% most central events. The v[2] coefficient is measured with the scalar product and the multiparticle cumulant methods, which have different sensitivities to the initial-state fluctuations. The values of both methods remain positive up to pt ~ 70 GeV, in all examined centrality classes. The v[3] coefficient, only measured with the scalar product method, tends to zero for pt >~ 20 GeV. Comparisons between theoretical calculations and data provide new constraints on the path-length dependence of parton energy loss in heavy ion collisions and highlight the importance of the initial-state fluctuations.

0 data tables match query

Study of jet quenching with Z+jet correlations in PbPb and pp collisions at $\sqrt{s_{NN}}$ = 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
No Journal Information, 2017.
Inspire Record 1512112 DOI 10.17182/hepdata.77604

The production of jets in association with Z bosons, reconstructed via the mu+mu- and e+e- decay channels, is studied in pp and, for the first time, in PbPb collisions. Both data samples were collected by the CMS experiment at the LHC, at a center-of-mass energy of 5.02 TeV. The PbPb collisions were analyzed in the 0-30% centrality range. The back-to-back azimuthal alignment was studied in both pp and PbPb collisions for Z bosons with transverse momentum ptz > 60 GeV/c and a recoiling jet with ptj > 30 GeV/c. The pt imbalance, xjz= ptj/ptz, as well as the average number of jet partners per Z, rjz, were studied in intervals of ptz, in both pp and PbPb collisions. The rjz is found to be smaller in PbPb than in pp collisions, which suggests that in PbPb collisions a larger fraction of partons, associated with the Z bosons, lose energy and fall below the 30 GeV/c ptj threshold.

0 data tables match query

Search for top squarks and dark matter particles in opposite-charge dilepton final states at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev. D97 (2018) 032009, 2018.
Inspire Record 1634253 DOI 10.17182/hepdata.79809

A search for new physics is presented in final states with two oppositely charged leptons (electrons or muons), jets identified as originating from b quarks, and missing transverse momentum (pTmiss). The search uses proton-proton collision data at s=13  TeV amounting to 35.9  fb-1 of integrated luminosity collected using the CMS detector in 2016. Hypothetical signal events are efficiently separated from the dominant tt¯ background with requirements on pTmiss and transverse-mass variables. No significant deviation is observed from the expected background. Exclusion limits are set in the context of simplified supersymmetric models with pair-produced top squarks. For top squarks, decaying exclusively to a top quark and a neutralino, exclusion limits are placed at 95% confidence level on the mass of the lightest top squark up to 800 GeV and on the lightest neutralino up to 360 GeV. These results, combined with searches in the single-lepton and all-jet final states, raise the exclusion limits up to 1050 GeV for the lightest top squark and up to 500 GeV for the lightest neutralino. For top squarks undergoing a cascade decay through charginos and sleptons, the mass limits reach up to 1300 GeV for top squarks and up to 800 GeV for the lightest neutralino. The results are also interpreted in a simplified model with a dark matter (DM) particle coupled to the top quark through a scalar or pseudoscalar mediator. For light DM, mediator masses up to 100 (50) GeV are excluded for scalar (pseudoscalar) mediators. The result for the scalar mediator achieves some of the most stringent limits to date in this model.

0 data tables match query

Observation of electroweak production of same-sign W boson pairs in the two jet and two same-sign lepton final state in proton-proton collisions at $\sqrt{s} = $ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
No Journal Information, 2017.
Inspire Record 1624170 DOI 10.17182/hepdata.81935

The first observation of electroweak production of same-sign W boson pairs in proton-proton collisions is reported. The data sample corresponds to an integrated luminosity of 35.9 fb$^{-1}$ collected at a center-of-mass energy of 13 TeV with the CMS detector at the LHC. Events are selected by requiring exactly two leptons (electrons or muons) of the same charge, moderate missing transverse momentum, and two jets with a large rapidity separation and a large dijet mass. The observed significance of the signal is 5.5 standard deviations, where a significance of 5.7 standard deviations is expected based on the standard model. The ratio of measured event yields to that expected from the standard model at leading-order is 0.90 $\pm$ 0.22. A cross section measurement in a fiducial region is reported. Bounds are given on the structure of quartic vector boson interactions in the framework of dimension-eight effective field theory operators and on the production of doubly charged Higgs bosons.

0 data tables match query

Suppression of excited Upsilon states relative to the ground state in PbPb collisions at sqrt(sNN) = 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
No Journal Information, 2017.
Inspire Record 1605750 DOI 10.17182/hepdata.79055

The relative yields of Upsilon mesons produced in pp and PbPb collisions at sqrt(s[NN]) = 5.02 TeV and reconstructed via the dimuon decay channel are measured using data collected by the CMS experiment. Double ratios are formed by comparing the yields of the excited states, Upsilon(2S) and Upsilon(3S), to the ground state, Upsilon(1S), in both PbPb and pp collisions at the same center-of-mass energy. The double ratios, [Upsilon(nS)/Upsilon(1S)](PbPb)/[Upsilon(nS)/Upsilon(1S)](pp), are measured to be 0.308 +/- 0.055 (stat) +/- 0.019 (syst) for the Upsilon(2S) and less than 0.26 at 95% confidence level for the Upsilon(3S). No significant Upsilon(3S) signal is found in the PbPb data. The double ratios are studied as a function of collision centrality, as well as dimuon transverse momentum and rapidity. No significant dependencies are observed.

0 data tables match query

Measurement of prompt D0 meson azimuthal anisotropy in PbPb collisions at sqrt(s[NN]) = 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
No Journal Information, 2017.
Inspire Record 1615780 DOI 10.17182/hepdata.78930

The prompt D0 meson azimuthal anisotropy coefficients, v[2] and v[3], are measured at midrapidity (abs(y) < 1.0) in PbPb collisions at a center-of-mass energy sqrt(s[NN]) = 5.02 TeV per nucleon pair with data collected by the CMS experiment. The measurement is performed in the transverse momentum (pT) range of 1 to 40 GeV/c, for central and midcentral collisions. The v[2] coefficient is found to be positive throughout the pT range studied. The first measurement of the prompt D0 meson v[3] coefficient is performed, and values up to 0.07 are observed for pT around 4 GeV/c. Compared to measurements of charged particles, a similar pT dependence, but smaller magnitude for pT < 6 GeV/c, is found for prompt D0 meson v[2] and v[3] coefficients. The results are consistent with the presence of collective motion of charm quarks at low pT and a path length dependence of charm quark energy loss at high pT, thereby providing new constraints on the theoretical description of the interactions between charm quarks and the quark-gluon plasma.

0 data tables match query

Constraints on the chiral magnetic effect using charge-dependent azimuthal correlations in pPb and PbPb collisions at the LHC

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
No Journal Information, 2017.
Inspire Record 1614482 DOI 10.17182/hepdata.82637

Charge-dependent azimuthal correlations of same- and opposite-sign pairs with respect to the second- and third-order event planes have been measured in pPb collisions at sqrt(s[NN]) = 8.16 TeV and PbPb collisions at 5.02TeV with the CMS experiment at the LHC. The measurement is motivated by the search for the charge separation phenomenon predicted by the chiral magnetic effect (CME) in heavy ion collisions. Three- and two-particle azimuthal correlators are extracted as functions of the pseudorapidity difference, the transverse momentum (pt) difference, and the pt average of same- and opposite-charge pairs in various event multiplicity ranges. The data suggest that the charge-dependent three-particle correlators with respect to the second- and third-order event planes share a common origin, predominantly arising from charge-dependent two-particle azimuthal correlations coupled with an anisotropic flow. The CME is expected to lead to a v[2]-independent three-particle correlation when the magnetic field is fixed. Using an event shape engineering technique, upper limits on the v[2]-independent fraction of the three-particle correlator are estimated to be 6.6% for pPb and 3.8% for PbPb collisions at 95% confidence level. The results of this analysis, both the dominance of two-particle correlations as a source of the three-particle results and the similarities seen between PbPb and pPb, provide stringent constraints on the origin of charge-dependent three-particle azimuthal correlations and challenge their interpretation as arising from a chiral magnetic effect in heavy ion collisions.

0 data tables match query

Study of dijet events with a large rapidity gap between the two leading jets in pp collisions at $\sqrt{s}$ = 7 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
No Journal Information, 2017.
Inspire Record 1629153 DOI 10.17182/hepdata.80169

Events with no charged particles produced between the two leading jets are studied in proton-proton collisions at $\sqrt{s}$ = 7 TeV. The jets were required to have transverse momentum $p_\mathrm{T}^{\text{jet}}$>40 GeV and pseudorapidity 1.5$<|\eta^{\text{jet}}|<$4.7, and to have values of $\eta^{\text{jet}}$ with opposite signs. The data used for this study were collected with the CMS detector during low-luminosity running at the LHC, and correspond to an integrated luminosity of 8 pb$^{-1}$. Events with no charged particles with $p_\mathrm{T}$> 0.2 GeV in the interval -1<$\eta$ <1 between the jets are observed in excess of calculations that assume no color-singlet exchange. The fraction of events with such a rapidity gap, amounting to 0.5-1% of the selected dijet sample, is measured as a function of the $p_\mathrm{T}$ of the second-leading jet and of the rapidity separation between the jets. The data are compared to previous measurements at Tevatron, and to perturbative quantum chromodynamics calculations based on the Balitsky-Fadin-Kuraev-Lipatov evolution equations, including different modelings of the non-perturbative gap survival probability.

0 data tables match query

Measurements of properties of the Higgs boson decaying into the four-lepton final state in pp collisions at $ \sqrt{s}=13 $ TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 1711 (2017) 047, 2017.
Inspire Record 1608162 DOI 10.17182/hepdata.80189

Properties of the Higgs boson are measured in the H → ZZ → 4ℓ (ℓ = e, μ) decay channel. A data sample of proton-proton collisions at $ \sqrt{s}=13 $ TeV, collected with the CMS detector at the LHC and corresponding to an integrated luminosity of 35.9 fb$^{−1}$ is used. The signal strength modifier μ, defined as the ratio of the observed Higgs boson rate in the H → ZZ → 4ℓ decay channel to the standard model expectation, is measured to be μ = 1.05$_{− 0.17}^{+ 0.19}$ at m$_{H}$ = 125.09 GeV, the combined ATLAS and CMS measurement of the Higgs boson mass. The signal strength modifiers for the individual Higgs boson production modes are also measured. The cross section in the fiducial phase space defined by the requirements on lepton kinematics and event topology is measured to be 2. 92$_{− 0.44}^{+ 0.48}$ (stat)$_{− 0.24}^{+ 0.28}$ (syst)fb, which is compatible with the standard model prediction of 2.76 ± 0.14 fb. Differential cross sections are reported as a function of the transverse momentum of the Higgs boson, the number of associated jets, and the transverse momentum of the leading associated jet. The Higgs boson mass is measured to be m$_{H}$ = 125.26 ± 0.21 GeV and the width is constrained using the on-shell invariant mass distribution to be Γ$_{H}$ < 1.10 GeV, at 95% confidence level.

0 data tables match query

Nuclear modification factor of D0 mesons in PbPb collisions at sqrt(s[NN]) = 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
No Journal Information, 2017.
Inspire Record 1616207 DOI 10.17182/hepdata.79053

The transverse momentum (pt) spectrum of prompt D0 mesons and their antiparticles has been measured via the hadronic decay channels D0 to K- pi+ and D0-bar to K+ pi- in pp and PbPb collisions at a centre-of-mass energy of 5.02 TeV per nucleon pair with the CMS detector at the LHC. The measurement is performed in the D0 meson pt range of 2-100 GeV and in the rapidity range of abs(y)<1. The pp (PbPb) dataset used for this analysis corresponds to an integrated luminosity of 27.4 inverse picobarns (530 inverse microbarns). The measured D0 meson pt spectrum in pp collisions is well described by perturbative QCD calculations. The nuclear modification factor, comparing D0 meson yields in PbPb and pp collisions, was extracted for both minimum-bias and the 10% most central PbPb interactions. For central events, the D0 meson yield in the PbPb collisions is suppressed by a factor of 5-6 compared to the pp reference in the pt range of 6-10 GeV. For D0 mesons in the high-pt range of 60-100 GeV, a significantly smaller suppression is observed. The results are also compared to theoretical calculations.

0 data tables match query

Search for decays of stopped exotic long-lived particles produced in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP, 2017.
Inspire Record 1645630 DOI 10.17182/hepdata.83010

A search is presented for the decays of heavy exotic long-lived particles (LLPs) that are produced in proton-proton collisions at a center-of-mass energy of 13\TeV at the CERN LHC and come to rest in the CMS detector. Their decays would be visible during periods of time well separated from proton-proton collisions. Two decay scenarios of stopped LLPs are explored: a hadronic decay detected in the calorimeter and a decay into muons detected in the muon system. The calorimeter (muon) search covers a period of sensitivity totaling 721 (744) hours in 38.6 (39.0) fb$^{-1}$ of data collected by the CMS detector in 2015 and 2016. The results are interpreted in several scenarios that predict LLPs. Production cross section limits are set as a function of the mean proper lifetime and the mass of the LLPs, for lifetimes between 100 ns and 10 days. These are the most stringent limits to date on the mass of hadronically decaying stopped LLPs, and this is the first search at the LHC for stopped LLPs that decay to muons.

0 data tables match query

Search for supersymmetry in proton-proton collisions at 13 TeV using identified top quarks

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev. D97 (2018) 012007, 2018.
Inspire Record 1633588 DOI 10.17182/hepdata.79808

A search for supersymmetry is presented based on proton-proton collision events containing identified hadronically decaying top quarks, no leptons, and an imbalance pTmiss in transverse momentum. The data were collected with the CMS detector at the CERN LHC at a center-of-mass energy of 13 TeV, and correspond to an integrated luminosity of 35.9  fb−1. Search regions are defined in terms of the multiplicity of bottom quark jet and top quark candidates, the pTmiss, the scalar sum of jet transverse momenta, and the mT2 mass variable. No statistically significant excess of events is observed relative to the expectation from the standard model. Lower limits on the masses of supersymmetric particles are determined at 95% confidence level in the context of simplified models with top quark production. For a model with direct top squark pair production followed by the decay of each top squark to a top quark and a neutralino, top squark masses up to 1020 GeV and neutralino masses up to 430 GeV are excluded. For a model with pair production of gluinos followed by the decay of each gluino to a top quark-antiquark pair and a neutralino, gluino masses up to 2040 GeV and neutralino masses up to 1150 GeV are excluded. These limits extend previous results.

0 data tables match query

Search for additional neutral MSSM Higgs bosons in the $\tau\tau$ final state in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
No Journal Information, 2018.
Inspire Record 1663234 DOI 10.17182/hepdata.83155

A search is presented for additional neutral Higgs bosons in the $\tau\tau$ final state in proton-proton collisions at the LHC. The search is performed in the context of the minimal supersymmetric extension of the standard model (MSSM), using the data collected with the CMS detector in 2016 at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. To enhance the sensitivity to neutral MSSM Higgs bosons, the search includes production of the Higgs boson in association with b quarks. No significant deviation above the expected background is observed. Model-independent limits at 95% confidence level (CL) are set on the product of the branching fraction for the decay into $\tau$ leptons and the cross section for the production via gluon fusion or in association with b quarks. These limits range from 18 pb at 90 GeV to 3.5 fb at 3.2 TeV for gluon fusion and from 15 pb (at 90 GeV) to 2.5 fb (at 3.2 TeV) for production in association with b quarks. In the m$_{\text{h}}^{\text{mod+}}$ scenario these limits translate into a 95% CL exclusion of $\tan\beta>$ 6 for neutral Higgs boson masses below 250 GeV, where $\tan\beta$ is the ratio of the vacuum expectation values of the neutral components of the two Higgs doublets. The 95% CL exclusion contour reaches 1.6 TeV for $\tan\beta=$ 60.

0 data tables match query

Search for resonant and nonresonant Higgs boson pair production in the $ \mathrm{b}\overline{\mathrm{b}}\mathit{\ell \nu \ell \nu } $ final state in proton-proton collisions at $ \sqrt{s}=13 $ TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 1801 (2018) 054, 2018.
Inspire Record 1615868 DOI 10.17182/hepdata.83195

Searches for resonant and nonresonant pair-produced Higgs bosons (HH) decaying respectively into ℓνℓν, through either W or Z bosons, and $ \mathrm{b}\overline{\mathrm{b}} $ are presented. The analyses are based on a sample of proton-proton collisions at $ \sqrt{s}=13 $ TeV, collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 35.9 fb$^{−1}$. Data and predictions from the standard model are in agreement within uncertainties. For the standard model HH hypothesis, the data exclude at 95% confidence level a product of the production cross section and branching fraction larger than 72 fb, corresponding to 79 times the standard model prediction. Constraints are placed on different scenarios considering anomalous couplings, which could affect the rate and kinematics of HH production. Upper limits at 95% confidence level are set on the production cross section of narrow-width spin-0 and spin-2 particles decaying to Higgs boson pairs, the latter produced with minimal gravity-like coupling.

0 data tables match query

Observation of $\mathrm{t\overline{t}}$H production

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 120 (2018) 231801, 2018.
Inspire Record 1666824 DOI 10.17182/hepdata.83809

The observation of Higgs boson production in association with a top quark-antiquark pair is reported, based on a combined analysis of proton-proton collision data at center-of-mass energies of s=7, 8, and 13 TeV, corresponding to integrated luminosities of up to 5.1, 19.7, and 35.9  fb-1, respectively. The data were collected with the CMS detector at the CERN LHC. The results of statistically independent searches for Higgs bosons produced in conjunction with a top quark-antiquark pair and decaying to pairs of W bosons, Z bosons, photons, τ leptons, or bottom quark jets are combined to maximize sensitivity. An excess of events is observed, with a significance of 5.2 standard deviations, over the expectation from the background-only hypothesis. The corresponding expected significance from the standard model for a Higgs boson mass of 125.09 GeV is 4.2 standard deviations. The combined best fit signal strength normalized to the standard model prediction is 1.26-0.26+0.31.

0 data tables match query

Search for narrow and broad dijet resonances in proton-proton collisions at $ \sqrt{s}=13 $ TeV and constraints on dark matter mediators and other new particles

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 1808 (2018) 130, 2018.
Inspire Record 1676214 DOI 10.17182/hepdata.80166

Searches for resonances decaying into pairs of jets are performed using proton-proton collision data collected at $\sqrt{s} =$ 13 TeV corresponding to an integrated luminosity of up to 36 fb$^{-1}$. A low-mass search, for resonances with masses between 0.6 and 1.6 TeV, is performed based on events with dijets reconstructed at the trigger level from calorimeter information. A high-mass search, for resonances with masses above 1.6 TeV, is performed using dijets reconstructed offline with a particle-flow algorithm. The dijet mass spectrum is well described by a smooth parameterization and no evidence for the production of new particles is observed. Upper limits at 95% confidence level are reported on the production cross section for narrow resonances with masses above 0.6 TeV. In the context of specific models, the limits exclude string resonances with masses below 7.7 TeV, scalar diquarks below 7.2 TeV, axigluons and colorons below 6.1 TeV, excited quarks below 6.0 TeV, color-octet scalars below 3.4 TeV, W' bosons below 3.3 TeV, Z' bosons below 2.7 TeV, Randall-Sundrum gravitons below 1.8 TeV and in the range 1.9 to 2.5 TeV, and dark matter mediators below 2.6 TeV. The limits on both vector and axial-vector mediators, in a simplified model of interactions between quarks and dark matter particles, are presented as functions of dark matter particle mass and coupling to quarks. Searches are also presented for broad resonances, including for the first time spin-1 resonances with intrinsic widths as large as 30% of the resonance mass. The broad resonance search improves and extends the exclusions of a dark matter mediator to larger values of its mass and coupling to quarks.

0 data tables match query