Approximate Scaling of Multiplicity Distributions as a Function of Missing Mass

Barshay, S. ; Engelmann, R. ; Kafka, T. ; et al.
Phys.Rev.Lett. 32 (1974) 1390, 1974.
Inspire Record 1032 DOI 10.17182/hepdata.21933

Data from p+p→p+X at 102, 205, and 405 GeV and from π−+p→p+X at 205 GeV exhibit an approximate scaling property in the charged-prong multiplicity distributions as a function of the missing mass for the range 5<~MX<~13 GeV.

0 data tables match query

Precise Measurement of the $\Xi^-$ Magnetic Moment

Duryea, J. ; Guglielmo, G. ; Heller, Kenneth J. ; et al.
Phys.Rev.Lett. 68 (1992) 768-771, 1992.
Inspire Record 335825 DOI 10.17182/hepdata.19850

With 4.36×106 events, spin precession in a magnetic field has been used to measure the magnetic moment of the Ξ− hyperon as -0.6505±0.0025 nuclear magnetons.

0 data tables match query

Production Polarization and Magnetic Moment of $\Xi^{-+}$ Antihyperons Produced by 800-GeV/c Protons

Ho, P.M. ; Longo, M.J. ; Nguyen, A. ; et al.
Phys.Rev.Lett. 65 (1990) 1713-1716, 1990.
Inspire Record 296567 DOI 10.17182/hepdata.22752

The polarization of Ξ¯ + hyperons produced by 800-GeV/c protons in the inclusive reaction p+Be→Ξ¯ ++X has been measured. The average polarization of the Ξ¯ +, at a mean xF=0.39 and pt=0.76 GeV/c, is -0.097±0.012±0.009. The magnetic moment of the Ξ¯ + is 0.657±0.028±0.020 nuclear magneton.

0 data tables match query

Measurement of W - photon couplings with CDF in p - anti-p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, M.G. ; Amidei, D. ; et al.
Phys.Rev.Lett. 74 (1995) 1936-1940, 1995.
Inspire Record 377331 DOI 10.17182/hepdata.42429

We report on a study of W+ photon production in approximately 20 pb−1 of p−p¯ collisions at s=1.8 TeV recorded with the Collider Detector at Fermilab. Our results are in good agreement with standard model expectations and are used to obtain limits on anomalous CP-conserving WWγ couplings of −2.3<Δκ<2.2 for λ=0 and −0.7<λ<0.7 for Δκ=0 at 95% C.L. We obtain the same limits for CP-violating couplings. These results provide limits on the higher-order electromagnetic moments of the W boson of 0.8<gW<3.1 for qWe=1 and −0.6<qWe<2.7 for gW=2 at 95% C.L.

0 data tables match query