250-{GeV}/$c \pi^- p$ Multiplicity Distributions and the Two Component Model

Hays, P.J. ; Diamond, R.N. ; Clark, R.K. ; et al.
Phys.Rev.D 23 (1981) 20, 1981.
Inspire Record 144125 DOI 10.17182/hepdata.24140

The charged-particle multiplicity distribution from 250-GeV/c π−p interactions in the Fermilab 15-ft bubble chamber is presented. The corrections to the raw data are described. Fits to these data along with other high-energy bubble-chamber data show that cluster models with two components—a low-multiplicity, diffractive component and a high-multiplicity, nondiffractive component—describe the data fairly well. The charged multiplicity of each cluster is found to be ∼2, while the number of clusters for each component grows linearly with ln(s). The multiplicity moments are consistent with other experiments. We find 〈nc〉=8.427±0.059, f2cc=8.66±0.11, 〈nc〉D=2.038±0.023. The total inelastic cross section is σI=21.42±0.50 mb.

0 data tables match query

Inclusive Production of Nonstrange Resonances in High-Energy $\nu p$ Charged Current Interactions

Berge, J.P. ; Bogert, D.V. ; Endorf, R.J. ; et al.
Phys.Rev.D 22 (1980) 1043, 1980.
Inspire Record 144267 DOI 10.17182/hepdata.24174

We have examined the inclusive production of nonstrange particle resonances in νp interactions using the Fermilab 15-ft bubble chamber. A sample of 2437 charged-current events with visible longitudinal momentum greater than 10 GeV/c was obtained. The ρ0 and Δ++(1232) are seen. An overall rate of 0.21±0.04 ρ0 per event is found. For five-prong events, the rate is 0.44±0.08 ρ0 per event. The ρ0Z distribution falls rapidly for Z greater than 0.4. The production of Δ++ is seen clearly in events with an identified proton. No evidence is seen for Δ0 production. An upper limit of 0.34 is placed on the ratio of ηπ0 (90% confidence level).

0 data tables match query

Measurement of the Underlying Event Activity in Proton-Proton Collisions at 0.9 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M. ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 70 (2010) 555-572, 2010.
Inspire Record 857644 DOI 10.17182/hepdata.55126

A measurement of the underlying activity in scattering processes with transverse momentum scale in the GeV region is performed in proton-proton collisions at sqrt(s) = 0.9 TeV, using data collected by the CMS experiment at the LHC. Charged hadron production is studied with reference to the direction of a leading object, either a charged particle or a set of charged particles forming a jet. Predictions of several QCD-inspired models as implemented in PYTHIA are compared, after full detector simulation, to the data. The models generally predict too little production of charged hadrons with pseudorapidity eta < 2, p_T > 0.5 GeV/c, and azimuthal direction transverse to that of the leading object.

0 data tables match query

Version 2
Measurements of differential cross sections for associated production of a W boson and jets in proton-proton collisions at sqrt(s)=8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.D 95 (2017) 052002, 2017.
Inspire Record 1491953 DOI 10.17182/hepdata.76995

Differential cross sections for a W boson produced in association with jets are measured in a data sample of proton-proton collisions at a center-of-mass energy of 8 TeV recorded with the CMS detector and corresponding to an integrated luminosity of 19.6 inverse femtobarns. The W bosons are identified through their decay mode W to mu nu. The cross sections are reported as functions of jet multiplicity, transverse momenta, and the scalar sum of jet transverse momenta (HT) for different jet multiplicities. Distributions of the angular correlations between the jets and the muon are examined, as well as the average number of jets as a function of HT and as a function of angular variables. The measured differential cross sections are compared with tree-level and higher-order recent event generators, as well as next-to-leading-order and next-to-next-to-leading-order theoretical predictions. The agreement of the generators with the measurements builds confidence in their use for the simulation of W+jets background processes in searches for new physics at the LHC.

0 data tables match query

Shape, transverse size, and charged hadron multiplicity of jets in pp collisions at 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 06 (2012) 160, 2012.
Inspire Record 1111014 DOI 10.17182/hepdata.70063

Measurements of jet characteristics from inclusive jet production in proton-proton collisions at a centre-of-mass energy of 7 TeV are presented. The data sample was collected with the CMS detector at the LHC during 2010 and corresponds to an integrated luminosity of 36 inverse picobarns. The mean charged hadron multiplicity, the differential and integral jet shape distributions, and two independent moments of the shape distributions are measured as functions of the jet transverse momentum for jets reconstructed with the anti-kT algorithm. The measured observables are corrected to the particle level and compared with predictions from various QCD Monte Carlo generators.

0 data tables match query

Measurement of the underlying event activity using charged-particle jets in proton-proton collisions at sqrt(s) = 2.76 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 09 (2015) 137, 2015.
Inspire Record 1385107 DOI 10.17182/hepdata.69365

A measurement of the underlying event (UE) activity in proton-proton collisions is performed using events with charged-particle jets produced in the central pseudorapidity region (abs(eta[jet]) < 2) and with transverse momentum 1<= pt[jet] < 100 GeV. The analysis uses a data sample collected at a centre-of-mass energy of 2.76 TeV with the CMS experiment at the LHC. The UE activity is measured as a function of pt[jet] in terms of the average multiplicity and scalar sum of transverse momenta (pt) of charged particles, with abs(eta) < 2 and pt > 0.5 GeV, in the azimuthal region transverse to the highest pt jet direction. By further dividing the transverse region into two regions of smaller and larger activity, various components of the UE activity are separated. The measurements are compared to previous results at 0.9 and 7 TeV, and to predictions of several Monte Carlo event generators, providing constraints on the modelling of the UE dynamics.

0 data tables match query