Measurement of the dijet mass distribution in p anti-p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, M. ; Amidei, D. ; et al.
Phys.Rev.D 48 (1993) 998-1008, 1993.
Inspire Record 353889 DOI 10.17182/hepdata.22573

The dijet invariant mass distribution has been measured in the region between 120 and 1000 GeV/c2, in 1.8-TeV pp¯ collisions. The data sample was collected with the Collider Detector at Fermilab (CDF). Data are compared to leading order (LO) and next-to-leading order (NLO) QCD calculations using two different clustering cone radii R in the jet definition. A quantitative test shows good agreement of data with the LO and NLO QCD predictions for a cone of R=1. The test using a cone of R=0.7 shows less agreement. The NLO calculation shows an improvement compared to LO in reproducing the shape of the spectrum for both radii, and approximately predicts the cone size dependence of the cross section.

0 data tables match query

Measurement of the Inclusive Jet Cross-Section in anti-p p Collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Amidei, D. ; Apollinari, G. ; et al.
Phys.Rev.Lett. 62 (1989) 613, 1989.
Inspire Record 267999 DOI 10.17182/hepdata.20032

Inclusive jet production at s=1.8 TeV has been measured in the CDF detector at the Fermilab Tevatron p¯p Collider. Jets with transverse energies (Et) up to 250 GeV have been observed. The Et dependence of the inclusive jet cross section is consistent with leading-order quantum-chromodynamic calculations, and comparison with lower-energy data shows deviations from scaling consistent with QCD. A lower limit of 700 GeV (95% confidence level) is placed on the quark compositeness scale parameter Λc associated with an effective contact interaction.

0 data tables match query

K0(S) PRODUCTION IN ANTI-P P INTERACTIONS AT S**(1/2) = 630-GeV AND 1800-GEV

The CDF collaboration Abe, F. ; Amidei, D. ; Apollinari, G. ; et al.
Phys.Rev.D 40 (1989) 3791-3794, 1989.
Inspire Record 287811 DOI 10.17182/hepdata.22999

Measurements of inclusive transverse-momentum spectra for KS0 mesons produced in proton-antiproton collisions at s of 630 and 1800 GeV are presented and compared with data taken at lower energies. The ratio, as a function of pT, of the cross section for KS0 to that for charged hadrons is very similar to what is observed at lower energies. At 1800 GeV, we calculate the strangeness-suppression factor λ=0.40±0.05.

0 data tables match query

The Two jet invariant mass distribution at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Amidei, D. ; Apollinari, G. ; et al.
Phys.Rev.D 41 (1990) 1722-1725, 1990.
Inspire Record 288745 DOI 10.17182/hepdata.23056

We present the dijet invariant-mass distribution in the region between 60 and 500 GeV, measured in 1.8-TeV p¯p collisions in the Collider Detector at Fermilab. Jets are restricted to the pseudorapidity interval |η|<0.7. Data are compared with QCD calculations; axigluons are excluded with 95% confidence in the region 120<MA<210 GeV for axigluon width ΓA=NαsMA6, with N=5.

0 data tables match query

Pseudorapidity Distributions of Charged Particles Produced in anti-p p Interactions at s**(1/2) = 630-GeV and 1800-GeV

The CDF collaboration Abe, F. ; Amidei, D. ; Apollinari, G. ; et al.
Phys.Rev.D 41 (1990) 2330, 1989.
Inspire Record 283352 DOI 10.17182/hepdata.52936

We present measurements of the pseudorapidity (η) distribution of charged particles (dNchdη) produced within |η|≤3.5 in proton-antiproton collisions at s of 630 and 1800 GeV. We measure dNchdη at η=0 to be 3.18±0.06(stat)±0.10(syst) at 630 GeV, and 3.95±0.03 (stat)±0.13(syst) at 1800 GeV. Many systematic errors in the ratio of dNchdη at the two energies cancel, and we measure 1.26±0.01±0.04 for the ratio of dNchdη at 1800 GeV to that at 630 GeV within |η|≤3. Comparing to lower-energy data, we observe an increase faster than ln(s) in dNchdη at η=0.

0 data tables match query

Measurement of b, the Nuclear Slope Parameter of the p anti-p Elastic Scattering Distribution at s**(1/2) = 1800-GeV

The E710 collaboration Amos, N.A. ; Baker, W.F. ; Bertani, M. ; et al.
Phys.Rev.Lett. 61 (1988) 525, 1988.
Inspire Record 261411 DOI 10.17182/hepdata.20066

We have studied proton-antiproton elastic scattering at s=1800 GeV at the Fermilab Collider, in the range 0.02<|t|<0.13 (GeV/c)2. Fitting the distribution by exp(−B|t|), we obtain a value of B of 17.2±1.3 (GeV/c)−2.

0 data tables match query

Measurement of QCD jet broadening in p anti-p collisions at S**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Amidei, D. ; Apollinari, G. ; et al.
Phys.Rev.D 44 (1991) 601-616, 1991.
Inspire Record 314647 DOI 10.17182/hepdata.22832

A measurement of the QCD jet-broadening parameter 〈QT〉 is described for high-ET jet data in the central calorimeter of the Collider Detector at Fermilab. As an alternate approach to clustering analysis, this method involves the use of a global event parameter which is free from the ambiguities associated with the definition and separation of individual clusters. The parameter QT is defined as the scalar sum of the transverse momentum perpendicular to the transverse thrust axis. Parton-level QCD predictions are made for 〈QT〉 as a function of ET, the total transverse energy in the events, and suggest that a measurement would show a dependence on the running of the strong coupling constant αs. Comparisons are made to first-order QCD parton-level calculations, as well as to fully evolved and hadronized leading-log simulations. The data are well described by the QCD predictions.

0 data tables match query

Measurement of the ratio sigma B (W ---> e neutrino) / sigma B (Z0 ---> e+ e-) in anti-p p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, M. ; Amidei, D. ; et al.
Phys.Rev.Lett. 73 (1994) 220-224, 1994.
Inspire Record 373743 DOI 10.17182/hepdata.50100

We present a measurement of the ratio σB(W→eν)σB(Z0→e+e−) in p¯p collisions at s=1.8 TeV The data represent an integrated luminosity of 21.7 pb−1 from the 1992-1993 run of the Collider Detector at Fermilab. We find σB(W→eν)σB(Z0→e+e−)=10.90±0.32(stat)±0.29(syst). From this value, we extract a value for the W width, Γ(W)=2.064±0.061(stat)±0.059(syst) GeV, and the branching ratio, Γ(W→eν)Γ(W)=0.1094±0.0033(stat)±0.0031(syst), and we set a decay-mode-independent limit on the top quark mass mtop>62 GeV/c2 at the 95% C.L.

0 data tables match query

Measurement of the Cross Section for Direct-Photon Production in Association with a Heavy Quark in $p\bar{p}$ Collisions at $\sqrt{s}$ = 1.96 TeV

The CDF collaboration Aaltonen, T. ; Amerio, S. ; Amidei, D. ; et al.
Phys.Rev.Lett. 111 (2013) 042003, 2013.
Inspire Record 1225278 DOI 10.17182/hepdata.61735

We report on a measurement of the cross section for direct-photon production in association with a heavy quark using the full data set of $\sqrt{s}=1.96$ TeV proton-antiproton collisions corresponding to 9.1 fb$^{-1}$ of integrated luminosity collected by the CDF II detector at the Fermilab Tevatron. The measurements are performed as a function of the photon transverse momentum, covering photon transverse momentum between 30 and 300 GeV, photon rapidities $|y^{\gamma}|<1.0$, heavy-quark-jet transverse momentum $p_{T}^{jet}>20$ GeV, and jet rapidities $|y^{jet}|<1.5$. The results are compared with several theoretical predictions.

0 data tables match query

Measurement of the Differential Cross Section $d{\sigma}/d(\cos {\theta}t)$ for Top-Quark Pair Production in $p-\bar{p}$ Collisions at $\sqrt{s} = 1.96$ TeV

The CDF collaboration Aaltonen, T. ; Amerio, S. ; Amidei, D. ; et al.
Phys.Rev.Lett. 111 (2013) 182002, 2013.
Inspire Record 1238100 DOI 10.17182/hepdata.64392

We report a measurement of the differential cross section, d{\sigma}/d(cos {\theta}t), for top-quark-pair production as a function of the top-quark production angle in proton-antiproton collisions at sqrt{s} = 1.96 TeV. This measurement is performed using data collected with the CDF II detector at the Tevatron, corresponding to an integrated luminosity of 9.4/fb. We employ the Legendre polynomials to characterize the shape of the differential cross section at the parton level. The observed Legendre coefficients are in good agreement with the prediction of the next-to-leading-order standard-model calculation, with the exception of an excess linear-term coefficient, a1 = 0.40 +- 0.12, compared to the standard-model prediction of a1 = 0.15^{+0.07}_{-0.03}.

0 data tables match query