Studying the Underlying Event in Drell-Yan and High Transverse Momentum Jet Production at the Tevatron

The CDF collaboration Aaltonen, T. ; Adelman, J. ; Alvarez Gonzalez, B. ; et al.
Phys.Rev.D 82 (2010) 034001, 2010.
Inspire Record 849042 DOI 10.17182/hepdata.55734

We study the underlying event in proton-antiproton collisions by examining the behavior of charged particles (transverse momentum pT > 0.5 GeV/c, pseudorapidity |\eta| < 1) produced in association with large transverse momentum jets (~2.2 fb-1) or with Drell-Yan lepton-pairs (~2.7 fb-1) in the Z-boson mass region (70 < M(pair) < 110 GeV/c2) as measured by CDF at 1.96 TeV center-of-mass energy. We use the direction of the lepton-pair (in Drell-Yan production) or the leading jet (in high-pT jet production) in each event to define three regions of \eta-\phi space; toward, away, and transverse, where \phi is the azimuthal scattering angle. For Drell-Yan production (excluding the leptons) both the toward and transverse regions are very sensitive to the underlying event. In high-pT jet production the transverse region is very sensitive to the underlying event and is separated into a MAX and MIN transverse region, which helps separate the hard component (initial and final-state radiation) from the beam-beam remnant and multiple parton interaction components of the scattering. The data are corrected to the particle level to remove detector effects and are then compared with several QCD Monte-Carlo models. The goal of this analysis is to provide data that can be used to test and improve the QCD Monte-Carlo models of the underlying event that are used to simulate hadron-hadron collisions.

0 data tables match query

Measurement of the cross section for W-boson production in association with jets in ppbar collisions at s**(1/2) = 1.96-TeV

The CDF collaboration Aaltonen, T. ; Adelman, J. ; Akimoto, T. ; et al.
Phys.Rev.D 77 (2008) 011108, 2008.
Inspire Record 768579 DOI 10.17182/hepdata.42714

We present a measurement of the cross section for W-boson production in association with jets in pbarp collisions at sqrt(s)=1.96$ TeV. The analysis uses a data sample corresponding to an integrated luminosity of 320 pb^-1 collected with the CDF II detector. W bosons are identified in their electron decay channel and jets are reconstructed using a cone algorithm. For each W+>= n-jet sample ($n= 1 - 4$) we measure sigma(ppbar =>W+>=n$-jet)x BR(W => e nu) with respect to the transverse energy E_T of the n^th-highest E_T jet above 20 GeV, for a restricted W => e nu decay phase space. The cross sections, corrected for all detector effects, can be directly compared to particle level W+ jet(s) predictions. We present here comparisons to leading order and next-to-leading order predictions.

0 data tables match query

Invariant-mass distribution of jet pairs produced in association with a $W$ boson in $p \bar{p}$ collisions at $\sqrt{s}=1.96$ TeV using the full CDF Run II data set

The CDF collaboration Aaltonen, T. ; Amerio, S. ; Amidei, D. ; et al.
Phys.Rev.D 89 (2014) 092001, 2014.
Inspire Record 1282906 DOI 10.17182/hepdata.64709

We report on a study of the dijet invariant-mass distribution in events with one identified lepton, a significant imbalance in the total event transverse momentum, and two jets. This distribution is sensitive to the possible production of a new particle in association with a $W$ boson, where the boson decays leptonically. We use the full data set of proton-antiproton collisions at 1.96 TeV center-of-mass energy collected by the Collider Detector at the Fermilab Tevatron and corresponding to an integrated luminosity of 8.9 fb$^{-1}$. The data are found to be consistent with standard-model expectations, and a 95$\%$ confidence level upper limit is set on the cross section for a $W$ boson produced in association with a new particle decaying into two jets.

0 data tables match query

Measurement of the WW production cross section in p anti-p collisions at s**(1/2) = 1.96-TeV

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 94 (2005) 151801, 2005.
Inspire Record 1650063 DOI 10.17182/hepdata.42037

A change in estimated integrated luminosity (from 226 pb$^{-1} to 257 pb$^{-1}$ leads to a corrected value for ${\sigma (p \bar p \to Z) \cdot}$Br${(Z \to \tau \tau)}$ of $209\pm13(stat.)\pm16(syst.)\pm13(lum) pb.

0 data tables match query

Measurement of the Inclusive Isolated Prompt Photon Cross Section in ppbar Collisions at sqrt{s} = 1.96 TeV using the CDF Detector

The CDF collaboration Aaltonen, T. ; Adelman, J. ; Alvarez Gonzalez, B. ; et al.
Phys.Rev.D 80 (2009) 111106, 2009.
Inspire Record 834437 DOI 10.17182/hepdata.53755

A measurement of the cross section for the inclusive production of isolated photons by the CDF experiment at the Fermilab Tevatron collider is presented. The measurement covers the pseudorapidity region |eta^gamma|<1.0 and the transverse energy range E_T^gamma>30 GeV and is based on 2.5/fb of integrated luminosity. The sample is almost a factor of seven larger than those used for recent published results and extends the E_T^gamma coverage by 100 GeV. The result agrees with next-to-leading order perturbative QCD calculations within uncertainties over the range 50<E_Tgamma<400 GeV, though the energy spectrum in the data shows a steeper slope at lower E_T^gamma.

0 data tables match query

First measurement of the production of a W boson in association with a single charm quark in p anti-p collisions at s**(1/2) = 1.96-TeV

The CDF collaboration Aaltonen, T. ; Adelman, Jahred A. ; Akimoto, T. ; et al.
Phys.Rev.Lett. 100 (2008) 091803, 2008.
Inspire Record 768011 DOI 10.17182/hepdata.51948

We present the first measurement of the production cross section of a W boson with a single charm quark (c) in p-pbar collisions at sqrt(s)=1.96 TeV, using soft muon tagging of c jets. In a data sample of ~1.8 fb-1, recorded with the CDF II detector at the Fermilab Tevatron, we select events with W+1 or 2 jets. We use the charge correlation between the W and the muon from the semileptonic decay of a charm hadron to extract the Wc signal. We measure sigma_{Wc}(p_{Tc}>20 GeV/c, |\eta_c|<1.5)\times BR(W->\ell\nu) = 9.8+/-3.2 pb, in agreement with theoretical expectations.

0 data tables match query

First measurement of sigma (p anti-p ---> Z) . Br (Z ---> tau tau) at s**(1/2) = 1.96- TeV

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.D 71 (2005) 072004, 2005.
Inspire Record 666357 DOI 10.17182/hepdata.50921

We present a measurement of the cross section for $Z$ production times the branching fraction to $\tau$ leptons, $\sigma \cdot$Br$(Z\to \tau^+ \tau^-)$, in $p \bar p$ collisions at $\sqrt{s}=$1.96 TeV in the channel in which one $\tau$ decays into $\mu \nu_{\mu} \nu_{\tau}$, and the other into $\rm {hadrons} + \nu_{\tau}$ or $e \nu_e \nu_{\tau}$. The data sample corresponds to an integrated luminosity of 226 pb$^{-1}$ collected with the D{\O}detector at the Fermilab Tevatron collider. The final sample contains 2008 candidate events with an estimated background of 55%. From this we obtain $\sigma \cdot$Br$(Z \to \tau^+ \tau^-)=237 \pm 15$(stat)$\pm 18$(sys)$ \pm 15$(lum) pb, in agreement with the standard model prediction.

0 data tables match query

Measurement of inclusive differential cross sections for Upsilon(1S) production in p anti-p collisions at s**(1/2) = 1.96-TeV

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 94 (2005) 232001, 2005.
Inspire Record 676877 DOI 10.17182/hepdata.51525

We present measurements of the inclusive production cross sections of the Upsilon(1S) bottomonium state in ppbar collisions at sqrt(s) = 1.96 TeV. Using the Upsilon(1S) to mu+mu- decay mode for a data sample of 159 +- 10 pb^-1 collected by the D0 detector at the Fermilab Tevatron collider, we determine the differential cross sections as a function of the Upsilon(1S) transverse momentum for three ranges of the Upsilon(1S) rapidity: 0 < |y| < 0.6, 0.6 < |y| < 1.2, and 1.2 < |y| < 1.8.

0 data tables match query

First Measurement of ZZ Production in panti-p Collisions at s**(1/2) = 1.96-TeV

The CDF collaboration Aaltonen, T. ; Adelman, Jahred A. ; Akimoto, T. ; et al.
Phys.Rev.Lett. 100 (2008) 201801, 2008.
Inspire Record 778518 DOI 10.17182/hepdata.42695

We report the first measurement of the cross section for Z boson pair production at a hadron collider. This result is based on a data sample corresponding to 1.9 fb-1 of integrated luminosity from ppbar collisions at sqrt{s} = 1.96 TeV collected with the CDF II detector at the Fermilab Tevatron. In the llll channel, we observe three ZZ candidates with an expected background of 0.096^{+0.092}_{-0.063} events. In the llnunu channel, we use a leading-order calculation of the relative ZZ and WW event probabilities to discriminate between signal and background. In the combination of llll and llnunu channels, we observe an excess of events with a probability of $5.1\times 10^{-6}$ to be due to the expected background. This corresponds to a significance of 4.4 standard deviations. The measured cross section is sigma(ppbar -> ZZ) = 1.4^{+0.7}_{-0.6} (stat.+syst.) pb, consistent with the standard model expectation.

0 data tables match query

Measurement of Cross Sections for b Jet Production in Events with a Z Boson in p-anti-p Collisions at s**(1/2) = 1.96-TeV

The CDF collaboration Aaltonen, T. ; Adelman, Jahred A. ; Akimoto, T. ; et al.
Phys.Rev.D 79 (2009) 052008, 2009.
Inspire Record 806082 DOI 10.17182/hepdata.51885

A measurement of the $\bjet$ production cross section is presented for events containing a $Z$ boson produced in $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV, using data corresponding to an integrated luminosity of 2 fb$^{-1}$ collected by the CDF II detector at the Tevatron. $Z$ bosons are selected in the electron and muon decay modes. Jets are considered with transverse energy $E_T>20$ GeV and pseudorapidity $|\eta|<1.5$ and are identified as $\bjets$ using a secondary vertex algorithm. The ratio of the integrated $Z+\bjet$ cross section to the inclusive $Z$ production cross section is measured to be $3.32 \pm 0.53 {\rm (stat.)} \pm 0.42 {\rm (syst.)}\times 10^{-3}$. This ratio is also measured differentially in jet $E_T$, jet $\eta$, $Z$-boson transverse momentum, number of jets, and number of $\bjets$. The predictions from leading order Monte Carlo generators and next-to-leading-order QCD calculations are found to be consistent with the measurements within experimental and theoretical uncertainties.

0 data tables match query