Nucleon neutral current structure functions

Mattison, T.S. ; Bofill, J. ; Busza, W. ; et al.
Phys.Rev.D 42 (1990) 1311-1330, 1990.
Inspire Record 304879 DOI 10.17182/hepdata.22924

The structure of the nucleon is studied by means of deep-inelastic neutrino-nucleon scattering at high energies through the weak neutral current. The neutrino-nucleon scattering events were observed in a 340-metric-ton fine-grained calorimeter exposed to a narrow-band (dichromatic) neutrino beam at Fermilab. The data sample after analysis cuts consists of 9200 charged-current and 3000 neutral-current neutrino and antineutrino events. The neutral-current valence and sea nucleon structure functions are extracted from the x distribution reconstructed from the measured angle and energy of the recoil-hadron shower and the incident narrow-band neutrino-beam energy. They are compared to those extracted from charged-current events analyzed as neutral-current events. It is shown that the nucleon structure is independent of the type of neutrino interaction, which confirms an important aspect of the standard model. The data are also used to determine the value of sin2θW=0.238±0.013±0.015±0.010 for a single-parameter fit, where the first error is from statistical sources, the second from experimental systematic errors, and the third from estimated theoretical errors.

0 data tables match query

Azimuthal Energy Flow in Deep Inelastic Neutrino Scattering

Mukherjee, A. ; Bofill, J. ; Busza, W. ; et al.
Phys.Rev.Lett. 60 (1988) 991, 1988.
Inspire Record 252080 DOI 10.17182/hepdata.3134

The azimuthal dependence of the flow of hadronic energy about the momentum-transfer direction in charged-current deep-inelastic neutrino-nucleon scattering is used to study gluon emission and the transverse momentum 〈kT〉 of partons confined inside the nucleon. A 7-standard-deviation azimuthal asymmetry is observed indicating an average 〈kT〉=0.303±0.041 GeV/c.

0 data tables match query

Inclusive Negative Hadron Production from High Energy $\bar{\nu}$ Nucleus Charged Current Interactions

Berge, J.P. ; Bogert, D. ; Endorf, R. ; et al.
Phys.Rev.D 18 (1978) 3905, 1978.
Inspire Record 130082 DOI 10.17182/hepdata.24370

We present data on inclusive negative-hadron production from charged-current antineutrino interactions in a 21% Ne-H mixture. Inclusive single-particle distributions are presented and are shown to be insensitive to the momentum transferred to the hadron vertex. Comparisons made to inclusive data from π−p and π−n interactions indicate a close similarity between the hadrons resulting from π-nucleon and ν¯-nucleus interactions. The general features of the ν¯-nucleus data are found to be similar to those seen in ν¯p interactions. This last observation implies that ν¯p and ν¯n interactions are similar and that nuclear effects are small.

0 data tables match query

First Measurement of the Muon Anti-Neutrino Double-Differential Charged Current Quasi-Elastic Cross Section

The MiniBooNE collaboration Aguilar-Arevalo, A.A. ; Brown, B.C. ; Bugel, L. ; et al.
Phys.Rev.D 88 (2013) 032001, 2013.
Inspire Record 1216885 DOI 10.17182/hepdata.82211

The largest sample ever recorded of $\numub$ charged-current quasi-elastic (CCQE, $\numub + p \to \mup + n$) candidate events is used to produce the minimally model-dependent, flux-integrated double-differential cross section $\frac{d^{2}\sigma}{dT_\mu d\uz}$ for $\numub$ incident on mineral oil. This measurement exploits the unprecedented statistics of the MiniBooNE anti-neutrino mode sample and provides the most complete information of this process to date. Also given to facilitate historical comparisons are the flux-unfolded total cross section $\sigma(E_\nu)$ and single-differential cross section $\frac{d\sigma}{d\qsq}$ on both mineral oil and on carbon by subtracting the $\numub$ CCQE events on hydrogen. The observed cross section is somewhat higher than the predicted cross section from a model assuming independently-acting nucleons in carbon with canonical form factor values. The shape of the data are also discrepant with this model. These results have implications for intra-nuclear processes and can help constrain signal and background processes for future neutrino oscillation measurements.

0 data tables match query

Measurement of the strange sea distribution using neutrino charm production

Rabinowitz, S.A. ; Arroyo, C. ; Bachmann, K.T. ; et al.
Phys.Rev.Lett. 70 (1993) 134-137, 1993.
Inspire Record 354524 DOI 10.17182/hepdata.19779

A high-statistics study by the Columbia-Chicago-Fermilab-Rochester Collaboration of opposite-sign dimuon events induced by neutrino-nucleon scattering at the Fermilab Tevatron is presented. A sample of 5044 νμ and 1062 ν¯μ induced μ∓μ± events with Pμ1≥9 GeV/c, Pμ2≥5 GeV/c, 30≤Eν≤600 GeV, and 〈Q2〉=22.2 GeV2/c2 is observed. The data support the slow-rescaling model of charm production with a value of mc=1.31±0.24 GeV2/c2. The first measurement of the Q2 dependence of the nucleon strange quark distribution xs(x) is presented. The data yield the Cabibbo-Kobayashi-Maskawa matrix element ‖Vcd‖=0.209±0.012 and the nucleon fractional strangeness content ηs=0.064−0.007+0.008.

0 data tables match query

Neutrino production of same sign dimuons at the Fermilab Tevatron

Sandler, P.H. ; Kinnel, T.S. ; Smith, W.H. ; et al.
Z.Phys.C 57 (1993) 1-12, 1993.
Inspire Record 32390 DOI 10.17182/hepdata.14493

The rate of neutrino- and antineutrino-induced prompt same-sign dimuon production in steel was measured using a sample of μ−μ− events and 25 μ+μ+ events withPμ>9 GeV/c, produced in 1.5 millionvμ and 0.3 million\(\overline {v_\mu}\) induced charged-current events with energies between 30 GeV and 600 GeV. The data were obtained with the Chicago-Columbia-Fermilab-Rochester (CCFR) neutrino detector in the Fermilab Tevatron Quadrupole Triplet Neutrino Beam during experiments E 744 and E 770. After background subtraction, the prompt rate of same-sign dimuon production is (0.53±0.24)×10−4 pervμ charged-current event and (0.52±0.33)×10−4 per\(\overline {v_\mu}\) charged-current event. The kinematic distributions of the same-sign dimuon events after background subtraction are consistent with those of the non-prompt background due to meson decays in the hadron shower of a charged-current event. Calculations ofc\(\bar c\) gluon bremsstrahlung, based on improved measurements of the charm mass parameter and nucleon structure functions by the CCFR collaboration, yield a prompt rate of (0.09±0.39)×10−4 pervμ charged-current event. In this case,c\(\bar c\) gluon bremsstrahlung is probably not an observable source of prompt same-sign dimuons.

0 data tables match query

Identification of nuclear effects in neutrino-carbon interactions at low three-momentum transfer

The MINERvA collaboration Rodrigues, P.A. ; Demgen, J. ; Miltenberger, E. ; et al.
Phys.Rev.Lett. 116 (2016) 071802, 2016.
Inspire Record 1405301 DOI 10.17182/hepdata.76976

Two different nuclear-medium effects are isolated using a low three-momentum transfer subsample of neutrino-carbon scattering data from the MINERvA neutrino experiment. The observed hadronic energy in charged-current $\nu_\mu$ interactions is combined with muon kinematics to permit separation of the quasielastic and $\Delta$(1232) resonance processes. First, we observe a small cross section at very low energy transfer that matches the expected screening effect of long-range nucleon correlations. Second, additions to the event rate in the kinematic region between the quasielastic and $\Delta$ resonance processes are needed to describe the data. The data in this kinematic region also has an enhanced population of multi-proton final states. Contributions predicted for scattering from a nucleon pair have both properties; the model tested in this analysis is a significant improvement but does not fully describe the data. We present the results as a double-differential cross section to enable further investigation of nuclear models. Improved description of the effects of the nuclear environment are required by current and future neutrino oscillation experiments.

0 data tables match query