A Measurement of the Neutral Current Electroweak Parameters using the Fermilab Narrow Band Neutrino Beam

Reutens, P.G. ; Merritt, F.S. ; Oreglia, M.J. ; et al.
Z.Phys.C 45 (1990) 539-550, 1990.
Inspire Record 305243 DOI 10.17182/hepdata.15280

We report a measurement of the electroweak parameters sin2θw and ϱ based on the ratios of neutral current to charged current events measured in the Fermilab narrow-band neutrino beam at energies of 30–240 GeV. The data are fully corrected for radiative effects, heavy-quark production, and other effects. The best value for sin2θw obtained, sin2θw=0.239±0.011, is consistent with the most recent values fromW andZ production, as well as from other neutrino experiments.

0 data tables match query

Average Transverse Momentum Behavior of Charged Hadrons in Charged Current Anti-neutrino - Nucleon Interactions

The Fermilab-Serpukhov-Moscow-Michigan collaboration Ammosov, V.V. ; Denisov, A.G. ; Gapienko, G.S. ; et al.
Phys.Lett.B 102 (1981) 213-216, 1981.
Inspire Record 155765 DOI 10.17182/hepdata.41432

We have studied transverse momenta of charged hadrons in the current fragmentation region of charged current antineutrino- nucleon interactions observed in the Fermilab 15 ft bubble chamber. The measured momentum squared transverse to the v μ + plane (p out 2 ) of the negative hadrons varies as a function of Q 2 , W 2 and x as expected from t he leading order perturbative QCD calculations. Positively charged hadrons show a different transverse momentum behaviour as a function of Q 2 .

0 data tables match query

Azimuthal Energy Flow in Deep Inelastic Neutrino Scattering

Mukherjee, A. ; Bofill, J. ; Busza, W. ; et al.
Phys.Rev.Lett. 60 (1988) 991, 1988.
Inspire Record 252080 DOI 10.17182/hepdata.3134

The azimuthal dependence of the flow of hadronic energy about the momentum-transfer direction in charged-current deep-inelastic neutrino-nucleon scattering is used to study gluon emission and the transverse momentum 〈kT〉 of partons confined inside the nucleon. A 7-standard-deviation azimuthal asymmetry is observed indicating an average 〈kT〉=0.303±0.041 GeV/c.

0 data tables match query

Charged Current Events with Neutral Strange Particles in High Energy Antineutrino Interactions

Ammosov, V.V. ; Denisov, A.G. ; Ermolov, P.F. ; et al.
Nucl.Phys.B 177 (1981) 365-381, 1981.
Inspire Record 153884 DOI 10.17182/hepdata.42576

The results of a study of strange particle production in charged current $\bar{\nu}_{\mu} N$ interactions in the Fermilab 15 ft bubble chamber filled with a heavy $Ne-H_2$ mixture are presented. Production rates and average multiplicities of $K^0$'s and Λ's as functions of W 2 and Q 2 are given. The experimental data agree well with the quark-parton model predictions if a yield of 0.06 ± 0.02 of $K^0$'s and Λ's from charm production is included. Upper limits for D-meson production are given and the shape of the charmed quark fragmentation function is discussed. Inclusive production of the K ∗ (890) and Σ(1385) resonances is measured and it is shown that only about 5% of the K 0 mesons and Λ hyperons results from resonance decays. Relative production rates of neutral strange particles on proton and neutron targets are studied.

0 data tables match query

Cross-section Measurements for the Reactions $\nu p \to \mu^- \pi^+ p$ and $\nu p \to \mu^- K^+ p$ at High-Energies

Bell, J. ; Coffin, C.T. ; Diamond, R.N. ; et al.
Phys.Rev.Lett. 41 (1978) 1008, 1978.
Inspire Record 131344 DOI 10.17182/hepdata.24326

We present results for the reactions νp→μ−π+p and νp→μ−K+p at energies above 5 GeV. The average cross section for the first reaction between 15 and 40 GeV is (0.80±0.12) × 10−38 cm2 and for events with Mπ+p<1.4 GeV is (0.55±0.08) × 10−38 cm2. The ratio of the cross section for the second reaction to that for the first is 0.017±0.010.

0 data tables match query

Cross-sections for Neutrino Production of Charmed Particles

The Fermilab E531 collaboration Ushida, N. ; Kondo, T. ; Tasaka, S. ; et al.
Phys.Lett.B 206 (1988) 375-379, 1988.
Inspire Record 269384 DOI 10.17182/hepdata.42539

We have found 122 charmed-particle decays among 3855 neutrino interactions located in the fiducial volume of a hybrid emulsion spectrometer installed in the Fermilab wide-band neutrino beam. We obtain an average relative charmed-particle production cross section of σ(ν μ → c μ − ) σ(ν μ →μ − ) =4.9 −0.6 +0.7 % , at an average neutrino energy of 22 GeV. We also obtain a production rate of σ(ν μ → c c ν μ ) σ(ν μ →ν μ ) =0.13 −0.11 +0.31 % , if we assume that there was an undetected muon, a limit of σ(ν μ → c c μ − ) σ(ν μ → c μ − )<3% (90% CL ) can be obtained. Other cross section ratios and limits are also presented.

0 data tables match query

First Measurement of the Muon Anti-Neutrino Double-Differential Charged Current Quasi-Elastic Cross Section

The MiniBooNE collaboration Aguilar-Arevalo, A.A. ; Brown, B.C. ; Bugel, L. ; et al.
Phys.Rev.D 88 (2013) 032001, 2013.
Inspire Record 1216885 DOI 10.17182/hepdata.82211

The largest sample ever recorded of $\numub$ charged-current quasi-elastic (CCQE, $\numub + p \to \mup + n$) candidate events is used to produce the minimally model-dependent, flux-integrated double-differential cross section $\frac{d^{2}\sigma}{dT_\mu d\uz}$ for $\numub$ incident on mineral oil. This measurement exploits the unprecedented statistics of the MiniBooNE anti-neutrino mode sample and provides the most complete information of this process to date. Also given to facilitate historical comparisons are the flux-unfolded total cross section $\sigma(E_\nu)$ and single-differential cross section $\frac{d\sigma}{d\qsq}$ on both mineral oil and on carbon by subtracting the $\numub$ CCQE events on hydrogen. The observed cross section is somewhat higher than the predicted cross section from a model assuming independently-acting nucleons in carbon with canonical form factor values. The shape of the data are also discrepant with this model. These results have implications for intra-nuclear processes and can help constrain signal and background processes for future neutrino oscillation measurements.

0 data tables match query

INCLUSIVE CHARGED CURRENT ANTI-NEUTRINO - NUCLEON INTERACTIONS AT HIGH-ENERGIES

The Fermilab-Serpukhov-Moscow-Michigan collaboration Ammosov, V.V. ; Denisov, A.G. ; Gapienko, G.S. ; et al.
Nucl.Phys.B 199 (1982) 399-423, 1982.
Inspire Record 167339 DOI 10.17182/hepdata.41220

We present results on the experimental study of inelastic charged-current antineutrino-nucleon scattering in the energy range of 10–200 GeV. The data sample, consisting of about 6500 antineutrino-induced events, was obtained in the Fermilab 15 ft bubble chamber filled with a heavy neon-hydrogen mixture. The differential cross sections for ν μ N interactions are presented in terms of scaling variables x and y . The structure functions F 2 ν and xF 3 ν have been evaluated as functions of x and E ν . A deviation from the scaling hypothesis, similar to those found in other experiments on inelastic lepton-nucleon scattering, has been observed. The data are interpreted in the framework of the quark-parton model. Quark and antiquark distributions and their energy dependences are presented.

0 data tables match query

Identification of nuclear effects in neutrino-carbon interactions at low three-momentum transfer

The MINERvA collaboration Rodrigues, P.A. ; Demgen, J. ; Miltenberger, E. ; et al.
Phys.Rev.Lett. 116 (2016) 071802, 2016.
Inspire Record 1405301 DOI 10.17182/hepdata.76976

Two different nuclear-medium effects are isolated using a low three-momentum transfer subsample of neutrino-carbon scattering data from the MINERvA neutrino experiment. The observed hadronic energy in charged-current $\nu_\mu$ interactions is combined with muon kinematics to permit separation of the quasielastic and $\Delta$(1232) resonance processes. First, we observe a small cross section at very low energy transfer that matches the expected screening effect of long-range nucleon correlations. Second, additions to the event rate in the kinematic region between the quasielastic and $\Delta$ resonance processes are needed to describe the data. The data in this kinematic region also has an enhanced population of multi-proton final states. Contributions predicted for scattering from a nucleon pair have both properties; the model tested in this analysis is a significant improvement but does not fully describe the data. We present the results as a double-differential cross section to enable further investigation of nuclear models. Improved description of the effects of the nuclear environment are required by current and future neutrino oscillation experiments.

0 data tables match query

Inclusive Negative Hadron Production from High Energy $\bar{\nu}$ Nucleus Charged Current Interactions

Berge, J.P. ; Bogert, D. ; Endorf, R. ; et al.
Phys.Rev.D 18 (1978) 3905, 1978.
Inspire Record 130082 DOI 10.17182/hepdata.24370

We present data on inclusive negative-hadron production from charged-current antineutrino interactions in a 21% Ne-H mixture. Inclusive single-particle distributions are presented and are shown to be insensitive to the momentum transferred to the hadron vertex. Comparisons made to inclusive data from π−p and π−n interactions indicate a close similarity between the hadrons resulting from π-nucleon and ν¯-nucleus interactions. The general features of the ν¯-nucleus data are found to be similar to those seen in ν¯p interactions. This last observation implies that ν¯p and ν¯n interactions are similar and that nuclear effects are small.

0 data tables match query