A Measurement of the differential dijet mass cross-section in p anti-p collisions at S**(1/2) = 1.8-TeV

The CDF collaboration Affolder, T. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.D 61 (2000) 091101, 2000.
Inspire Record 511377 DOI 10.17182/hepdata.42047

We present a measurement of the cross section for production of two or more jets as a function of dijet mass, based on an integrated luminosity of 86 pb^-1 collected with the Collider Detector at Fermilab. Our dijet mass spectrum is described within errors by next-to-leading order QCD predictions using CTEQ4HJ parton distributions, and is in good agreement with a similar measurement from the D0 experiment.

0 data tables match query

Azimuthal correlations for inclusive 2-jet, 3-jet, and 4-jet events in pp collisions at $\sqrt{s}= $ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 78 (2018) 566, 2018.
Inspire Record 1643640 DOI 10.17182/hepdata.86140

Azimuthal correlations between the two jets with the largest transverse momenta $ {p_{\mathrm{T}}} $ in inclusive 2-, 3-, and 4-jet events are presented for several regions of the leading jet $ {p_{\mathrm{T}}} $ up to 4 TeV. For 3- and 4-jet scenarios, measurements of the minimum azimuthal angles between any two of the three or four leading $ {p_{\mathrm{T}}} $ jets are also presented. The analysis is based on data from proton-proton collisions collected by the CMS Collaboration at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. Calculations based on leading-order matrix elements supplemented with parton showering and hadronization do not fully describe the data, so next-to-leading-order calculations matched with parton shower and hadronization models are needed to better describe the measured distributions. Furthermore, we show that azimuthal jet correlations are sensitive to details of the parton showering, hadronization, and multiparton interactions. A next-to-leading-order calculation matched with parton showers in the MC@NLO method, as implemented in HERWIG 7, gives a better overall description of the measurements than the POWHEG method.

0 data tables match query

Azimuthal decorrelations and multiple parton interactions in photon+2 jet and photon+3 jet events in ppbar collisions at sqrt{s}=1.96 TeV

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Rev.D 83 (2011) 052008, 2011.
Inspire Record 883664 DOI 10.17182/hepdata.63845

Samples of inclusive photon+2 jet and photon+3 jet events collected by the D0 experiment with an integrated luminosity of about 1fb^-1 in ppbar collisions at sqrt{s}=1.96 TeV are used to measure cross sections as a function of the angle in the plane transverse to the beam direction between the transverse momentum (pT) of the photon+leading jet system (jets are ordered in pT) and pT of the other jet for photon+2 jet, or pT sum of the two other jets for photon+3 jet events. The results are compared to different models of multiple parton interactions (MPI) in the PYTHIA and SHERPA Monte Carlo (MC) generators. The data indicate a contribution from events with double parton (DP) interactions and are well described by predictions provided by the PYTHIA MPI models with pT-ordered showers and by SHERPA with the default MPI model. The photon+2 jet data are also used to determine the fraction of events with DP interactions as a function of the azimuthal angle and as a function of the second jet pT.

0 data tables match query

Charged particle multiplicity in jets in p anti-p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Affolder, T. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.Lett. 87 (2001) 211804, 2001.
Inspire Record 560273 DOI 10.17182/hepdata.42931

We report on a measurement of the mean charged-particle multiplicity of jets in dijet events with dijet masses in the range 80–630GeV/c2, produced at the Tevatron in pp¯ collisions with s=1.8TeV and recorded by the Collider Detector at Fermilab. The data are fit to perturbative-QCD calculations carried out in the framework of the modified leading log approximation and the hypothesis of local parton-hadron duality. The fit yields values for two parameters in that framework: the ratio of parton multiplicities in gluon and quark jets, $r≡N_{partons}^{g−jet} / N_{partons}^{q−jet} = 1.7 \pm 0.3$, and the ratio of the number of charged hadrons to the number of partons in a jet, $K_{LPHD}^{charged} ≡ N_{hadrons}^{charged} / N_{partons} = 0.57 \pm 0.11$.

0 data tables match query

Dijet Azimuthal Decorrelations in pp Collisions at sqrt(s) = 7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M. ; Tumasyan, Armen ; et al.
Phys.Rev.Lett. 106 (2011) 122003, 2011.
Inspire Record 885663 DOI 10.17182/hepdata.57051

Measurements of dijet azimuthal decorrelations in pp collisions at sqrt(s) = 7 TeV using the CMS detector at the CERN LHC are presented. The analysis is based on an inclusive dijet event sample corresponding to an integrated luminosity of 2.9 inverse picobarns. The results are compared to predictions from perturbative QCD calculations and various Monte Carlo event generators. The dijet azimuthal distributions are found to be sensitive to initial-state gluon radiation.

0 data tables match query

Dijet production by color-singlet exchange at the Fermilab Tevatron

The CDF collaboration Abe, F. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.Lett. 80 (1998) 1156-1161, 1998.
Inspire Record 447619 DOI 10.17182/hepdata.42182

We report a new measurement of dijet production by color-singlet exchange in pp¯ collisions at s=1.8TeV at the Fermilab Tevatron. In a sample of events with two jets of transverse energy ETjet>20GeV, pseudorapidity in the range 1.8<|ηjet|<3.5, and η1η2<0, we find that a fraction R=[1.13±0.12(stat)±0.11(syst)]% has a pseudorapidity gap within |η|<1 between the jets that can be attributed to color-singlet exchnage. The fraction R shows no significant dependence on ETjet or on the pseudorapidity separation between the jets.

0 data tables match query

Distributions of Topological Observables in Inclusive Three- and Four-Jet Events in pp Collisions at sqrt(s) = 7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 75 (2015) 302, 2015.
Inspire Record 1345159 DOI 10.17182/hepdata.75115

This paper presents distributions of topological observables in inclusive three- and four-jet events produced in pp collisions at a centre-of-mass energy of 7 TeV with a data sample collected by the CMS experiment corresponding to a luminosity of 5.1 inverse femtobarns. The distributions are corrected for detector effects, and compared with several event generators based on two- and multi-parton matrix elements at leading order. Among the considered calculations, MADGRAPH interfaced with PYTHIA6 displays the best overall agreement with data.

0 data tables match query

Double parton interactions in photon + 3 jet and photon + b/c jet + 2 jet events in ppbar collisions at sqrt{s}=1.96 TeV

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Rev.D 89 (2014) 072006, 2014.
Inspire Record 1280531 DOI 10.17182/hepdata.64745

We determine the fraction of events with double parton (DP) scattering in a single ppbar collision at sqrt{s}=1.96 TeV in samples of photon + 3 jet and photon + b/c jet + 2 jet events collected with the D0 detector and corresponding to an integrated luminosity of about 8.7 fb^{-1}. The DP fractions and effective cross sections (sigma_eff) are measured for both event samples using the same kinematic selections. The measured DP fractions range from 0.21 to 0.17, with effective cross sections in the photon + 3 jet and photon + b/c jet + 2 jet samples of sigma_eff^incl = 12.7 +- 0.2 (stat) +- 1.3 (syst) mb and sigma_eff^HF = 14.6 +- 0.6 (stat) +- 3.2 (syst) mb, respectively.

0 data tables match query

Further Properties of High-Mass Multijet Events at the Fermilab Proton-Antiproton Collider

The CDF collaboration Abe, F. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.D 54 (1996) 4221-4233, 1996.
Inspire Record 418504 DOI 10.17182/hepdata.52862

The properties of high-mass multijet events produced at the Fermilab proton-antiproton collider are compared with leading order QCD matrix element predictions, QCD parton shower Monte Carlo predictions, and the predictions from a model in which events are distributed uniformly over the available multibody phase-space. Multijet distributions corresponding to (4N-4) variables that span the N-body parameter space are found to be well described by the QCD calculations for inclusive three-jet, four-jet, and five-jet events. The agreement between data, QCD Matrix Element calculations, and QCD parton shower Monte Carlo predictions suggests that 2 -> 2 scattering plus gluon radiation provides a good first approximation to the full LO QCD matrix element for events with three, four, or even five jets in the final state.

0 data tables match query

High p(T) jets in anti-p p collisions at s**(1/2) = 630-GeV and 1800-GeV

The D0 collaboration Abbott, B. ; Abdesselam, A. ; Abolins, M. ; et al.
Phys.Rev.D 64 (2001) 032003, 2001.
Inspire Record 539003 DOI 10.17182/hepdata.42946

Results are presented from analyses of jet data produced in pbarp collisions at sqrt{s} = 630 and 1800 GeV collected with the DO detector during the 1994-95 Fermilab Tevatron Collider run. We discuss details of detector calibration, and jet selection criteria in measurements of various jet production cross sections at sqrt{s} = 630 and 1800 GeV. The inclusive jet cross sections, the dijet mass spectrum, the dijet angular distributions, and the ratio of inclusive jet cross sections at sqrt{s} = 630 and 1800 GeV are compared to next-to-leading-order QCD predictions. The order alpha_s^3 calculations are in good agreement with the data. We also use the data at sqrt{s} = 1800 GeV to rule out models of quark compositeness with a contact interaction scale less than 2.2 TeV at the 95% confidence level.

0 data tables match query