Measurement of simplified template cross sections of the Higgs boson produced in association with W or Z bosons in the H $\to$$\mathrm{b\bar{b}}$ decay channel in proton-proton collisions at $\sqrt{s}$ =13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
CMS-HIG-20-001, 2023.
Inspire Record 2736546 DOI 10.17182/hepdata.145636

Differential cross sections are measured for the standard model Higgs boson produced in association with vector bosons (W, Z) and decaying to a pair of b quarks. Measurements are performed within the framework of the simplified template cross sections. The analysis relies on the leptonic decays of the W and Z bosons, resulting in final states with 0, 1, or 2 electrons or muons. The Higgs boson candidates are either reconstructed from pairs of resolved b-tagged jets, or from single large distance parameter jets containing the particles arising from two b quarks. Proton-proton collision data at $\sqrt{s}$ = 13 TeV, collected by the CMS experiment in 2016-2018 and corresponding to a total integrated luminosity of 138 fb$^{-1}$, are analyzed. The inclusive signal strength, defined as the product of the observed production cross section and branching fraction relative to the standard model expectation, combining all analysis categories, is found to be $\mu$ = 1.15$^{+0.22}_{-0.20}$. This corresponds to an observed (expected) significance of 6.3 (5.6) standard deviations.

0 data tables match query

Search for the decay of a Higgs boson in the $\ell\ell\gamma$ channel in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 11 (2018) 152, 2018.
Inspire Record 1678088 DOI 10.17182/hepdata.86538

A search for a Higgs boson decaying into a pair of electrons or muons and a photon is described. Higgs boson decays to a Z boson and a photon (H $\to$ Z$\gamma\to\ell\ell\gamma$, $\ell =$ e or $\mu$), or to two photons, one of which has an internal conversion into a muon pair (H $\to\gamma^{*}\gamma\to\mu\mu\gamma$) were considered. The analysis is performed using a data set recorded by the CMS experiment at the LHC from proton-proton collisions at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. No significant excess above the background prediction has been found. Limits are set on the cross section for a standard model Higgs boson decaying to opposite-sign electron or muon pairs and a photon. The observed limits on cross section times the corresponding branching fractions vary between 1.4 and 4.0 (6.1 and 11.4) times the standard model cross section for H $\to\gamma^{*}\gamma\to\mu\mu\gamma$ (H $\to$ Z$\gamma\to\ell\ell\gamma$) in the 120-130 GeV mass range of the $\ell\ell\gamma$ system. The H $\to\gamma^*\gamma\to\mu\mu\gamma$ and H $\to$ Z$\gamma\to\ell\ell\gamma$ analyses are combined for $m_\mathrm{H} =$ 125 GeV, obtaining an observed (expected) 95% confidence level upper limit of 3.9 (2.0) times the standard model cross section.

0 data tables match query

Search for an exotic decay of the Higgs boson to a pair of light pseudoscalars in the final state with two b quarks and two $\tau$ leptons in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 785 (2018) 462, 2018.
Inspire Record 1674926 DOI 10.17182/hepdata.86228

A search for an exotic decay of the Higgs boson to a pair of light pseudoscalar bosons is performed for the first time in the final state with two b quarks and two $\tau$ leptons. The search is motivated in the context of models of physics beyond the standard model (SM), such as two Higgs doublet models extended with a complex scalar singlet (2HDM+S), which include the next-to-minimal supersymmetric SM (NMSSM). The results are based on a data set of proton-proton collisions corresponding to an integrated luminosity of 35.9 fb$^{-1}$, accumulated by the CMS experiment at the LHC in 2016 at a center-of-mass energy of 13 TeV. Masses of the pseudoscalar boson between 15 and 60 GeV are probed, and no excess of events above the SM expectation is observed. Upper limits between 3 and 12% are set on the branching fraction $\mathcal{B}$(h $\to$ aa $\to$ 2$\tau$2b) assuming the SM production of the Higgs boson. Upper limits are also set on the branching fraction of the Higgs boson to two light pseudoscalar bosons in different 2HDM+S scenarios. Assuming the SM production cross section for the Higgs boson, the upper limit on this quantity is as low as 20% for a mass of the pseudoscalar of 40 GeV in the NMSSM.

0 data tables match query

Search for new physics using effective field theory in 13 TeV pp collision events that contain a top quark pair and a boosted Z or Higgs boson

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.D 108 (2023) 032008, 2023.
Inspire Record 2142913 DOI 10.17182/hepdata.127700

A data sample containing top quark pairs ($\mathrm{t\bar{t}}$) produced in association with a Lorentz-boosted Z or Higgs boson is used to search for signs of new physics using effective field theory. The data correspond to an integrated luminosity of 138 fb$^{-1}$ of proton-proton collisions produced at a center-of-mass energy of 13 TeV at the LHC and collected by the CMS experiment. Selected events contain a single lepton and hadronic jets, including two identified with the decay of bottom quarks, plus an additional large-radius jet with high transverse momentum identified as a Z or Higgs boson decaying to a bottom quark pair. Machine learning techniques are employed to discriminate between $\mathrm{t\bar{t}}$Z or $\mathrm{t\bar{t}}$H events and events from background processes, which are dominated by $\mathrm{t\bar{t}}$ + jets production. No indications of new physics are observed. The signal strengths of boosted $\mathrm{t\bar{t}}$Z and $\mathrm{t\bar{t}}$H production are measured, and upper limits are placed on the $\mathrm{t\bar{t}}$Z and $\mathrm{t\bar{t}}$H differential cross sections as functions of the Z or Higgs boson transverse momentum. The effects of new physics are probed using a framework in which the standard model is considered to be the low-energy effective field theory of a higher energy scale theory. Eight possible dimension-six operators are added to the standard model Lagrangian and their corresponding coefficients are constrained via fits to the data.

0 data tables match query

Search for associated production of a Higgs boson and a single top quark in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 99 (2019) 092005, 2019.
Inspire Record 1704945 DOI 10.17182/hepdata.90686

A search is presented for the production of a Higgs boson in association with a single top quark, based on data collected in 2016 by the CMS experiment at the LHC at a center-of-mass energy of 13 TeV, which corresponds to an integrated luminosity of 35.9 fb$^{-1}$. The production cross section for this process is highly sensitive to the absolute values of the top quark Yukawa coupling, $y_t$, the Higgs boson coupling to vector bosons, $g_\mathrm{HVV}$, and, uniquely, to their relative sign. Analyses using multilepton signatures, targeting H $\to$ WW, H $\to$ $\tau\tau$, and H $\to$ ZZ decay modes, and signatures with a single lepton and a $\mathrm{b\overline{b}}$ pair, targeting the H $\to$ $\mathrm{b\overline{b}}$ decay, are combined with a reinterpretation of a measurement in the H $\to$ $\gamma\gamma$ channel to constrain $y_\mathrm{t}$. For a standard model-like value of $g_\mathrm{HVV}$, the data favor positive values of $y_\mathrm{t}$ and exclude values of $y_\mathrm{t}$ below about $-$0.9 $y_\mathrm{t}^\mathrm{SM}$.

0 data tables match query

Search for an exotic decay of the Higgs boson to a pair of light pseudoscalars in the final state of two muons and two $\tau$ leptons in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 11 (2018) 018, 2018.
Inspire Record 1673011 DOI 10.17182/hepdata.85886

A search for exotic Higgs boson decays to light pseudoscalars in the final state of two muons and two $\tau$ leptons is performed using proton-proton collision data recorded by the CMS experiment at the LHC at a center-of-mass energy of 13 TeV in 2016, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. Masses of the pseudoscalar boson between 15.0 and 62.5 GeV are probed, and no significant excess of data is observed above the prediction of the standard model. Upper limits are set on the branching fraction of the Higgs boson to two light pseudoscalar bosons in different types of two-Higgs-doublet models extended with a complex scalar singlet.

0 data tables match query

Search for rare decays of Z and Higgs bosons to J$/\psi$ and a photon in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 79 (2019) 94, 2019.
Inspire Record 1700175 DOI 10.17182/hepdata.89175

A search is presented for decays of Z and Higgs bosons to a J$/\psi$ meson and a photon, with the subsequent decay of the J$/\psi$ to $\mu^+\mu^-$. The analysis uses data from proton-proton collisions with an integrated luminosity of 35.9 fb$^{-1}$ at $\sqrt{s} =$ 13 TeV collected with the CMS detector at the LHC. The observed limit on the Z $\to$ J$/\psi \gamma$ decay branching fraction, assuming that the J$/\psi$ meson is produced unpolarized, is 1.4 $\times$ 10$^{-6}$ at 95% confidence level, which corresponds to a rate higher than expected in the standard model by a factor of 15. For extreme-polarization scenarios, the observed limit changes from -13.6 to +8.6% with respect to the unpolarized scenario. The observed upper limit on the branching fraction for H $\to$ J$/\psi \gamma$ where the J$/\psi$ meson is assumed to be transversely polarized is 7.6 $\times$ 10$^{-4}$, a factor of 260 larger than the standard model prediction. The results for the Higgs boson are combined with previous data from proton-proton collisions at $\sqrt{s} =$ 8 TeV to produce an observed upper limit on the branching fraction for H $\to$ J$/\psi \gamma$ that is a factor of 220 larger than the standard model value.

0 data tables match query

Measurement and interpretation of differential cross sections for Higgs boson production at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 792 (2019) 369-396, 2019.
Inspire Record 1709330 DOI 10.17182/hepdata.89936

Differential Higgs boson (H) production cross sections are sensitive probes for physics beyond the standard model. New physics may contribute in the gluon-gluon fusion loop, the dominant Higgs boson production mechanism at the LHC, and manifest itself through deviations from the distributions predicted by the standard model. Combined spectra for the H $\to$ $\gamma\gamma$, H $\to$ ZZ, and H $\to$ $\mathrm{b\overline{b}}$ decay channels and the inclusive Higgs boson production cross section are presented, based on proton-proton collision data recorded with the CMS detector at $\sqrt{s} =$ 13 TeV corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The transverse momentum spectrum is used to place limits on the Higgs boson couplings to the top, bottom, and charm quarks, as well as its direct coupling to the gluon field. No significant deviations from the standard model are observed in any differential distribution. The measured total cross section is 61.1 $\pm$ 6.0 (stat) $\pm$ 3.7 (syst) pb, and the precision of the measurement of the differential cross section of the Higgs boson transverse momentum is improved by about 15% with respect to the H $\to$ $\gamma\gamma$ channel alone.

0 data tables match query

Measurement of the inclusive and differential Higgs boson production cross sections in the leptonic WW decay mode at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 03 (2021) 003, 2021.
Inspire Record 1805274 DOI 10.17182/hepdata.100162

Measurement of the fiducial inclusive and differential production cross sections of the Higgs boson in proton-proton collisions at $\sqrt{s} =$ 13 TeV are performed using events where the Higgs boson decays into a pair of W bosons that subsequently decay into a final state with an electron, a muon, and a pair of neutrinos. The analysis is based on data collected with the CMS detector at the LHC during 2016-2018, corresponding to an integrated luminosity of 137 fb$^{-1}$. Production cross sections are measured as a function of the transverse momentum of the Higgs boson and the associated jet multiplicity. The Higgs boson signal is extracted and simultaneously unfolded to correct for selection efficiency and resolution effects using maximum-likelihood fits to the observed distributions in data. The integrated fiducial cross section is measured to be 86.5 $\pm$ 9.5 fb, consistent with the Standard Model expectation of 82.5 $\pm$ 4.2 fb. No significant deviation from the Standard Model expectations is observed in the differential measurements.

0 data tables match query

Version 2
Search for Higgs boson pairs decaying to WW*WW*, WW*$\tau\tau$, and $\tau\tau\tau\tau$ in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 07 (2023) 095, 2023.
Inspire Record 2098277 DOI 10.17182/hepdata.130795

The results of a search for Higgs boson pair (HH) production in the WW*WW*, WW*$\tau\tau$, and $\tau\tau\tau\tau$ decay modes are presented. The search uses 138 fb$^{-1}$ of proton-proton collision data recorded by the CMS experiment at the LHC at a center-of-mass energy of 13 TeV from 2016 to 2018. Analyzed events contain two, three, or four reconstructed leptons, including electrons, muons, and hadronically decaying tau leptons. No evidence for a signal is found in the data. Upper limits are set on the cross section for nonresonant HH production, as well as resonant production in which a new heavy particle decays to a pair of Higgs bosons. For nonresonant production, the observed (expected) upper limit on the cross section at 95% confidence level (CL) is 21.3 (19.4) times the standard model (SM) prediction. The observed (expected) ratio of the trilinear Higgs boson self-coupling to its value in the SM is constrained to be within the interval $-$6.9 to 11.1 ($-$6.9 to 11.7) at 95% CL, and limits are set on a variety of new-physics models using an effective field theory approach. The observed (expected) limits on the cross section for resonant HH production range from 0.18 to 0.90 (0.08 to 1.06) pb at 95% CL for new heavy-particle masses in the range 250-1000 GeV.

0 data tables match query