Search for second generation leptoquarks in the dimuon plus dijet channel of p anti-p collisions at S**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.Lett. 81 (1998) 4806-4811, 1998.
Inspire Record 473168 DOI 10.17182/hepdata.42155

We report on a search for second generation leptoquarks (Phi_2) using a data sample corresponding to an integrated luminosity of 110 pb^{-1} collected at the Collider Detector at Fermilab. We present upper limits on the production cross section as a function of Phi_2 mass, assuming that the leptoquarks are produced in pairs and decay into a muon and a quark with branching ratio beta. Using a Next-to-Leading order QCD calculation, we extract a lower mass limit of M_{\Phi_2} > 202 (160) GeV$/c^{2} at 95% confidence level for scalar leptoquarks with beta=1(0.5).

0 data tables match query

Measurement of J / psi, psi-prime and upsilon total cross-sections in 800-GeV/c p - Si interactions

The E771 collaboration Alexopoulos, T ; Antoniazzi, L ; Arenton, M ; et al.
Phys.Lett.B 374 (1996) 271-276, 1996.
Inspire Record 400873 DOI 10.17182/hepdata.42316

We report on the analysis of Charmonium and Bottomium states produced in p-Si interactions at s =38.7 GeV . The data have been collected with the open geometry spectrometer of the E771 Experiment at the FNAL High Intensity Lab. J ψ , ψ′ and γ total cross sections as well as the ratio B(ψ′ → μμ)σ(ψ′) (B( J ψ → μμ)σ( J ψ )) have been measured. Results are compared with theoretical predictions and with results at other energies.

0 data tables match query

Measurement of Upsilon production for p+p and p+d interactions at 800-GeV

The NuSea collaboration Zhu, L.Y. ; Reimer, Paul E. ; Mueller, B.A. ; et al.
Phys.Rev.Lett. 100 (2008) 062301, 2008.
Inspire Record 763967 DOI 10.17182/hepdata.42715

We report a high statistics measurement of Upsilon production with an 800 GeV/c proton beam on hydrogen and deuterium targets. The dominance of the gluon-gluon fusion process for Upsilon production at this energy implies that the cross section ratio, $\sigma (p + d \to \Upsilon) / 2\sigma (p + p\to \Upsilon)$, is sensitive to the gluon content in the neutron relative to that in the proton. Over the kinematic region 0 < x_F < 0.6, this ratio is found to be consistent with unity, in striking contrast to the behavior of the Drell-Yan cross section ratio $\sigma(p+d)_{DY}/2\sigma(p+p)_{DY}$. This result shows that the gluon distributions in the proton and neutron are very similar. The Upsilon production cross sections are also compared with the p+d and p+Cu cross sections from earlier measurements.

0 data tables match query