Neutrino Production of Opposite Sign Dimuons at Tevatron Energies

Foudas, C. ; Bachmann, K.T. ; Bernstein, R.H. ; et al.
Phys.Rev.Lett. 64 (1990) 1207, 1990.
Inspire Record 26417 DOI 10.17182/hepdata.20000
0 data tables match query

Neutrino production of same sign dimuons at the Fermilab Tevatron

Sandler, P.H. ; Kinnel, T.S. ; Smith, W.H. ; et al.
Z.Phys. C57 (1993) 1-12, 1993.
Inspire Record 32390 DOI 10.17182/hepdata.14493
0 data tables match query

A Measurement of alpha(s)(Q**2) from the Gross-Llewellyn Smith sum rule

Kim, J.H. ; Harris, Deborah A. ; Arroyo, C.G. ; et al.
Phys.Rev.Lett. 81 (1998) 3595-3598, 1998.
Inspire Record 475039 DOI 10.17182/hepdata.19536

We extract a set of values for the Gross-Llewellyn Smith sum rule at different values of 4-momentum transfer squared ($Q^{2}$), by combining revised CCFR neutrino data with data from other neutrino deep-inelastic scattering experiments for $1 < Q^2 < 15 GeV^2/c^2$. A comparison with the order $\alpha^{3}_{s}$ theoretical predictions yields a determination of $\alpha_{s}$ at the scale of the Z-boson mass of $0.114 \pm^{.009}_{.012}$. This measurement provides a new and useful test of perturbative QCD at low $Q^2$, because of the low uncertainties in the higher order calculations.

0 data tables match query


Merritt, F.S. ; Barish, B.C. ; Bartlett, J.F. ; et al.
Phys.Rev. D17 (1978) 2199-2205, 1978.
Inspire Record 132560 DOI 10.17182/hepdata.24431

We present measured hadron energy distributions for the reactions ν(ν¯)+N→ν(ν¯)+hadrons at high energy, as well as for the similar charged-current interactions. Insofar as possible, the determination of these distributions avoids any a priori assumptions about either the neutral-current or the charged-current interactions. We further analyze the neutral-current distributions within the framework of specific models, particularly the scaling model, to obtain a positive-helicity component P=0.36±0.10, which lies between pure V−A and pure V or A, and a coupling strength of g0=0.31±0.03 relative to the charged-current interaction. These coupling parameters agree well with the predictions of the Weinberg-Salam model with sin2θW=0.33±0.07.

0 data tables match query

Nucleon structure functions from high energy neutrino interactions

Oltman, E. ; Auchincloss, Priscilla S. ; Blair, R.E. ; et al.
Z.Phys. C53 (1992) 51-71, 1992.
Inspire Record 335706 DOI 10.17182/hepdata.1433
0 data tables match query

Precise measurement of neutrino and anti-neutrino differential cross sections

The NuTeV collaboration Tzanov, M. ; Naples, D. ; Boyd, S. ; et al.
Phys.Rev. D74 (2006) 012008, 2006.
Inspire Record 691719 DOI 10.17182/hepdata.11120

The NuTeV experiment at Fermilab has obtained a unique high statistics sample of neutrino and anti-neutrino interactions using its high-energy sign-selected beam. We present a measurement of the differential cross section for charged-current neutrino and anti-neutrino scattering from iron. Structure functions, F_2(x,Q^2) and xF_3(x,Q^2), are determined by fitting the inelasticity, y, dependence of the cross sections. This measurement has significantly improved systematic precision as a consequence of more precise understanding of hadron and muon energy scales.

0 data tables match query

A Measurement of $\Lambda_{\overline{MS}}$ from $\nu_{\mu}$ - Fe Nonsinglet Structure Functions at the Fermilab Tevatron

Quintas, P.Z. ; Leung, W.C. ; Mishra, S.R. ; et al.
Phys.Rev.Lett. 71 (1993) 1307-1310, 1993.
Inspire Record 336860 DOI 10.17182/hepdata.19733
0 data tables match query

A Measurement of the neutral current electroweak parameters using the Fermilab narrow band neutrino beam

Reutens, P.G. ; Merritt, F.S. ; Oreglia, M.J. ; et al.
Z.Phys. C45 (1990) 539-550, 1990.
Inspire Record 305243 DOI 10.17182/hepdata.15280
0 data tables match query

Normalized Small Y Cross-Sections for Neutrinos and anti-neutrinos at High-Energy

Barish, B.C. ; Bartlett, J.F. ; Bodek, A ; et al.
Phys.Rev.Lett. 39 (1977) 741, 1977.
Inspire Record 5717 DOI 10.17182/hepdata.50114
0 data tables match query

Measurement of Partonic Nuclear Effects in Deep-Inelastic Neutrino Scattering using MINERvA

The MINERvA collaboration Mousseau, J. ; Wospakrik, M. ; Aliaga, L. ; et al.
Phys.Rev. D93 (2016) 071101, 2016.
Inspire Record 1416818 DOI 10.17182/hepdata.77044

The MINERvA Collaboration reports a novel study of neutrino-nucleus charged-current deep inelastic scattering (DIS) using the same neutrino beam incident on targets of polystyrene, graphite, iron, and lead. Results are presented as ratios of C, Fe, and Pb to CH. The ratios of total DIS cross sections as a function of neutrino energy and flux-integrated differential cross sections as a function of the Bjorken scaling variable x are presented in the neutrino-energy range of 5–50 GeV. Based on the predictions of charged-lepton scattering ratios, good agreement is found between the data and prediction at medium x and low neutrino energy. However, the ratios appear to be below predictions in the vicinity of the nuclear shadowing region, x<0.1. This apparent deficit, reflected in the DIS cross-section ratio at high Eν, is consistent with previous MINERvA observations [B. Tice (MINERvA Collaboration), Phys. Rev. Lett. 112, 231801 (2014).] and with the predicted onset of nuclear shadowing with the axial-vector current in neutrino scattering.

0 data tables match query