Mass identified particle production in proton anti-proton collisions at s**(1/2) = 300-GeV, 540-GeV, 1000-GeV, and 1800-GeV

The E735 collaboration Alexopoulos, T. ; Allen, C. ; Anderson, E.W. ; et al.
Phys.Rev.D 48 (1993) 984-997, 1993.
Inspire Record 363171 DOI 10.17182/hepdata.22669

The yields and average transverse momenta of pions, kaons, and antiprotons produced at the Fermilab p¯p collider at s=300, 540, 1000, and 1800 GeV are presented and compared with data from the energies reached at the CERN collider. We also present data on the dependence of average transverse momentum 〈pt〉 and particle ratios as a function of charged particle density dNcdη; data for particle densities as high as six times the average value, corresponding to a Bjorken energy density 6 GeV/fm3, are reported. These data are relevant to the search for quark-gluon phase of QCD.

0 data tables match query

Search for flavor-changing neutral current interactions of the top quark and Higgs boson in final states with two photons in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, A. ; Adam, W. ; Andrejkovic, J.W. ; et al.
Phys.Rev.Lett. 129 (2022) 032001, 2022.
Inspire Record 2111572 DOI 10.17182/hepdata.105999

Proton-proton interactions resulting in final states with two photons are studied in a search for the signature of flavor-changing neutral current interactions of top quarks (t) and Higgs bosons (H). The analysis is based on data collected at a center-of-mass energy of 13 TeV with the CMS detector at the LHC, corresponding to an integrated luminosity of 137 fb$^{-1}$. No significant excess above the background prediction is observed. Upper limits on the branching fractions ($\mathcal{B}$) of the top quark decaying to a Higgs boson and an up (u) or charm quark (c) are derived through a binned fit to the diphoton invariant mass spectrum. The observed (expected) 95% confidence level upper limits are found to be 0.019 (0.031)% for $\mathcal B$(t $\to$ Hu) and 0.073 (0.051)% for $\mathcal{B}$(t $\to$ Hc). These are the strictest upper limits yet determined.

0 data tables match query

Version 3
Search for long-lived particles decaying to jets with displaced vertices in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, A.M. ; Tumasyan, A. ; Adam, W. ; et al.
Phys.Rev.D 104 (2021) 052011, 2021.
Inspire Record 1861146 DOI 10.17182/hepdata.102798

A search is presented for long-lived particles produced in pairs in proton-proton collisions at the LHC operating at a center-of-mass energy of 13 TeV. The data were collected with the CMS detector during the period from 2015 through 2018, and correspond to a total integrated luminosity of 140 fb$^{-1}$. This search targets pairs of long-lived particles with mean proper decay lengths between 0.1 and 100 mm, each of which decays into at least two quarks that hadronize to jets, resulting in a final state with two displaced vertices. No significant excess of events with two displaced vertices is observed. In the context of $R$-parity violating supersymmetry models, the pair production of long-lived neutralinos, gluinos, and top squarks is excluded at 95% confidence level for cross sections larger than 0.08 fb, masses between 800 and 3000 GeV, and mean proper decay lengths between 1 and 25 mm.

0 data tables match query

Search for new physics in the $\tau$ lepton plus missing transverse momentum final state in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, A. ; Adam, W. ; Andrejkovic, J.W. ; et al.
JHEP 09 (2023) 051, 2023.
Inspire Record 2626189 DOI 10.17182/hepdata.135472

A search for physics beyond the standard model (SM) in the final state with a hadronically decaying tau lepton and a neutrino is presented. This analysis is based on data recorded by the CMS experiment from proton-proton collisions at a center-of-mass energy of 13 TeV at the LHC, corresponding to a total integrated luminosity of 138 fb$^{=1}$. The transverse mass spectrum is analyzed for the presence of new physics. No significant deviation from the SM prediction is observed. Limits are set on the production cross section of a W' boson decaying into a tau lepton and a neutrino. Lower limits are set on the mass of the sequential SM-like heavy charged vector boson and the mass of a quantum black hole. Upper limits are placed on the couplings of a new boson to the SM fermions. Constraints are put on a nonuniversal gauge interaction model and an effective field theory model. For the first time, upper limits on the cross section of $t$-channel leptoquark (LQ) exchange are presented. These limits are translated into exclusion limits on the LQ mass and on its coupling in the $t$-channel. The sensitivity of this analysis extends into the parameter space of LQ models that attempt to explain the anomalies observed in B meson decays. The limits presented for the various interpretations are the most stringent to date. Additionally, a model-independent limit is provided.

0 data tables match query

Search for a heavy resonance decaying into a top quark and a W boson in the lepton+jets final state at $\sqrt{s}$= 13 TeV

The CMS collaboration Tumasyan, A. ; Adam, W. ; Andrejkovic, J.W. ; et al.
JHEP 04 (2022) 048, 2022.
Inspire Record 1972089 DOI 10.17182/hepdata.114361

A search for a heavy resonance decaying into a top quark and a W boson in proton-proton collisions at $\sqrt{s} =$ 13 TeV is presented. The data analyzed were recorded with the CMS detector at the LHC and correspond to an integrated luminosity of 138 fb$^{-1}$. The top quark is reconstructed as a single jet and the W boson, from its decay into an electron or muon and the corresponding neutrino. A top quark tagging technique based on jet clustering with a variable distance parameter and simultaneous jet grooming is used to identify jets from the collimated top quark decay. The results are interpreted in the context of two benchmark models, where the heavy resonance is either an excited bottom quark b$^*$ or a vector-like quark B. A statistical combination with an earlier search by the CMS Collaboration in the all-hadronic final state is performed to place upper cross section limits on these two models. The new analysis extends the lower range of resonance mass probed from 1.4 down to 0.7 TeV. For left-handed, right-handed, and vector-like couplings, b$^*$ masses up to 3.0, 3.0, and 3.2 TeV are excluded at 95% confidence level, respectively. The observed upper limits represent the most stringent constraints on the b$^*$ model to date.

0 data tables match query

Search for physics beyond the standard model in multilepton final states in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 03 (2020) 051, 2020.
Inspire Record 1764474 DOI 10.17182/hepdata.91969

A search for physics beyond the standard model in events with at least three charged leptons (electrons or muons) is presented. The data sample corresponds to an integrated luminosity of 137 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} =$ 13 TeV, collected with the CMS detector at the LHC in 2016-2018. The two targeted signal processes are pair production of type-III seesaw heavy fermions and production of a light scalar or pseudoscalar boson in association with a pair of top quarks. The heavy fermions may be manifested as an excess of events with large values of leptonic transverse momenta or missing transverse momentum. The light scalars or pseudoscalars may create a localized excess in the dilepton mass spectra. The results exclude heavy fermions of the type-III seesaw model for masses below 880 GeV at 95% confidence level in the scenario of equal branching fractions to each lepton flavor. This is the most restrictive limit on the flavor-democratic scenario of the type-III seesaw model to date. Assuming a Yukawa coupling of unit strength to top quarks, branching fractions of new scalar (pseudoscalar) bosons to dielectrons or dimuons above 0.004 (0.03) and 0.04 (0.03) are excluded at 95% confidence level for masses in the range 15-75 and 108-340 GeV, respectively. These are the first limits in these channels on an extension of the standard model with scalar or pseudoscalar particles.

0 data tables match query

Search for high mass dijet resonances with a new background prediction method in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 05 (2020) 033, 2020.
Inspire Record 1764471 DOI 10.17182/hepdata.91059

A search for narrow and broad resonances with masses greater than 1.8 TeV decaying to a pair of jets is presented. The search uses proton-proton collision data at $\sqrt{s} =$ 13 TeV collected at the LHC, corresponding to an integrated luminosity of 137 fb$^{-1}$. The background arising from standard model processes is predicted with the fit method used in previous publications and with a new method. The dijet invariant mass spectrum is well described by both data-driven methods, and no significant evidence for the production of new particles is observed. Model independent upper limits are reported on the production cross sections of narrow resonances, and broad resonances with widths up to 55% of the resonance mass. Limits are presented on the masses of narrow resonances from various models: string resonances, scalar diquarks, axigluons, colorons, excited quarks, color-octet scalars, W' and Z' bosons, Randall-Sundrum gravitons, and dark matter mediators. The limits on narrow resonances are improved by 200 to 800 GeV relative to those reported in previous CMS dijet resonance searches. The limits on dark matter mediators are presented as a function of the resonance mass and width, and on the associated coupling strength as a function of the mediator mass. These limits exclude at 95% confidence level a dark matter mediator with a mass of 1.8 TeV and width 1% of its mass or higher, up to one with a mass of 4.8 TeV and a width 45% of its mass or higher.

0 data tables match query

Observation of Two Excited B$^+_\mathrm{c}$ States and Measurement of the B$^+_\mathrm{c}$(2S) Mass in pp Collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 122 (2019) 132001, 2019.
Inspire Record 1718338 DOI 10.17182/hepdata.88919

Signals consistent with the B$^+_\mathrm{c}$(2S) and B$^{*+}_\mathrm{c}$(2S) states are observed in proton-proton collisions at $\sqrt{s} =$ 13 TeV, in an event sample corresponding to an integrated luminosity of 140 fb$^{-1}$, collected by the CMS experiment during the 2016, 2017, and 2018 LHC running periods. These excited $\bar{\mathrm{b}}$c states are observed in the B$^+_\mathrm{c}\pi^+\pi^-$ invariant mass spectrum, with the ground state B$^+_\mathrm{c}$ reconstructed through its decay to J/$\psi\,\pi^+$. The two states are well resolved from each other and are observed with a significance exceeding five standard deviations. The mass of the B$^+_\mathrm{c}$(2S) meson is measured to be 6871.0 $\pm$ 1.2 (stat) $\pm$ 0.8 (syst) $\pm$ 0.8 (B$^+_\mathrm{c}$) MeV, where the last term corresponds to the uncertainty in the world-average B$^+_\mathrm{c}$ mass.

0 data tables match query

Measurement of differential $\text{t}\overline{\text{t}}$ production cross sections in the full kinematic range using lepton+jets events from proton-proton collisions at $\sqrt{s} = $ 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.D 104 (2021) 092013, 2021.
Inspire Record 1901295 DOI 10.17182/hepdata.102956

Measurements of differential and double-differential cross sections of top quark pair ($\text{t}\overline{\text{t}}$) production are presented in the lepton+jets channels with a single electron or muon and jets in the final state. The analysis combines for the first time signatures of top quarks with low transverse momentum $p_\text{T}$, where the top quark decay products can be identified as separated jets and isolated leptons, and with high $p_\text{T}$, where the decay products are collimated and overlap. The measurements are based on proton-proton collision data at $\sqrt{s} = $ 13 TeV collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 137 fb$^{-1}$. The cross sections are presented at the parton and particle levels, where the latter minimizes extrapolations based on theoretical assumptions. Most of the measured differential cross sections are well described by standard model predictions with the exception of some double-differential distributions. The inclusive $\text{t}\overline{\text{t}}$ production cross section is measured to be $\sigma_{\text{t}\overline{\text{t}}} = $ 791 $\pm$ 25 pb, which constitutes the most precise measurement in the lepton+jets channel to date.

0 data tables match query

Measurement of the electroweak production of Z$\gamma$ and two jets in proton-proton collisions at $\sqrt{s} =$ 13 TeV and constraints on anomalous quartic gauge couplings

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.D 104 (2021) 072001, 2021.
Inspire Record 1869513 DOI 10.17182/hepdata.102954

The first observation of the electroweak (EW) production of a Z boson, a photon, and two forward jets (Z$\gamma$jj) in proton-proton collisions at a center-of-mass energy of 13 TeV is presented. A data set corresponding to an integrated luminosity of 137 fb$^{-1}$, collected by the CMS experiment at the LHC in 2016-2018 is used. The measured fiducial cross section for EW Z$\gamma$jj is $\sigma_{\mathrm{EW}}$ = 5.21 $\pm$ 0.52 (stat) $\pm$ 0.56 (syst) fb = 5.21 $\pm$ 0.76 fb. Single-differential cross sections in photon, leading lepton, and leading jet transverse momenta, and double-differential cross sections in $m_{\mathrm{jj}}$ and $\lvert\Delta\eta_{\mathrm{jj}}\rvert$ are also measured. Exclusion limits on anomalous quartic gauge couplings are derived at 95% confidence level in terms of the effective field theory operators $\mathrm{M}_{0}$ to $\mathrm{M}_{5}$, $\mathrm{M}_{7}$, $\mathrm{T}_{0}$ to $\mathrm{T}_{2}$, and $\mathrm{T}_{5}$ to $\mathrm{T}_{9}$.

0 data tables match query

Version 2
Measurement of the top quark mass using events with a single reconstructed top quark in pp collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 12 (2021) 161, 2021.
Inspire Record 1911567 DOI 10.17182/hepdata.102987

A measurement of the top quark mass is performed using a data sample enriched with single top quark events produced in the $t$ channel. The study is based on proton-proton collision data, corresponding to an integrated luminosity of 35.9 fb$^{-1}$, recorded at $\sqrt{s}$ = 13 TeV by the CMS experiment at the LHC in 2016. Candidate events are selected by requiring an isolated high-momentum lepton (muon or electron) and exactly two jets, of which one is identified as originating from a bottom quark. Multivariate discriminants are designed to separate the signal from the background. Optimized thresholds are placed on the discriminant outputs to obtain an event sample with high signal purity. The top quark mass is found to be 172.13 $^{+0.76}_{-0.77}$ GeV, where the uncertainty includes both the statistical and systematic components, reaching sub-GeV precision for the first time in this event topology. The masses of the top quark and antiquark are also determined separately using the lepton charge in the final state, from which the mass ratio and difference are determined to be 0.9952 $^{+0.0079}_{-0.0104}$ and 0.83 $^{+1.79}_{-1.35}$ GeV, respectively. The results are consistent with $CPT$ invariance.

0 data tables match query

Measurement of electroweak production of a W boson in association with two jets in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 80 (2020) 43, 2020.
Inspire Record 1724439 DOI 10.17182/hepdata.86211

A measurement is presented of electroweak (EW) production of a W boson in association with two jets in proton-proton collisions at $\sqrt{s} =$ 13 TeV. The data sample was recorded by the CMS Collaboration at the LHC and corresponds to an integrated luminosity of 35.9 fb$^{-1}$. The measurement is performed for the $\ell\nu$jj final state (with $\ell\nu$ indicating a lepton-neutrino pair, and j representing the quarks produced in the hard interaction) in a kinematic region defined by invariant mass $m_\mathrm{jj}$ $>$ 120 GeV and transverse momenta $p_\mathrm{T j}$ $>$ 25 GeV. The cross section of the process is measured in the electron and muon channels yielding $\sigma_\mathrm{EW}$(Wjj) = 6.23 $\pm$ 0.12 (stat) $\pm$ 0.61 (syst) pb per channel, in agreement with leading-order standard model predictions. The additional hadronic activity of events in a signal-enriched region is studied, and the measurements are compared with predictions. The final state is also used to perform a search for anomalous trilinear gauge couplings. Limits on anomalous trilinear gauge couplings associated with dimension-six operators are given in the framework of an effective field theory. The corresponding 95% confidence level intervals are $-$2.3 $<$ $c_{\mathrm{WWW}}/\Lambda^2$ $<$ 2.5 TeV$^{-2}$, $-$8.8 $<$ $c_{\mathrm{W}}/\Lambda^2$ $<$ 16 TeV$^{-2}$, and $-$45 $<$ $c_{\mathrm{B}}/\Lambda^2$ $<$ 46 TeV$^{-2}$. These results are combined with the CMS EW Zjj analysis, yielding the constraint on the $c_{\mathrm{WWW}}$ coupling: $-$1.8 $<$ $c_{\mathrm{WWW}}/\Lambda^2$ $<$ 2.0 TeV$^{-2}$.

0 data tables match query

Search for anomalous electroweak production of vector boson pairs in association with two jets in proton-proton collisions at 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 798 (2019) 134985, 2019.
Inspire Record 1735737 DOI 10.17182/hepdata.89398

A search for anomalous electroweak production of WW, WZ, and ZZ boson pairs in association with two jets in proton-proton collisions at $\sqrt{s} =$ 13 TeV at the LHC is reported. The data sample corresponds to an integrated luminosity of 35.9 fb$^{-1}$ collected with the CMS detector. Events are selected by requiring two jets with large rapidity separation and invariant mass, one or two leptons (electrons or muons), and a W or Z boson decaying hadronically. No excess of events with respect to the standard model background predictions is observed and constraints on the structure of quartic vector boson interactions in the framework of dimension-8 effective field theory operators are reported. Stringent limits on parameters of the effective field theory operators are obtained. The observed 95% confidence level limits for the S0, M0, and T0 operators are $-$2.7 $<$ f$_{\mathrm{S0}}/ \Lambda^{4}$ $<$ 2.7, $-$1.0 $<$ f$_{\mathrm{M0}}/ \Lambda^{4}$ $<$ 1.0, and $-$0.17 $<$ f$_{\mathrm{T0}}/ \Lambda^{4}$ $<$ 0.16, in units of TeV$^{-4}$. Constraints are also reported on the product of the cross section and branching fraction for vector boson fusion production of charged Higgs bosons as a function of mass from 600 to 2000 GeV. The results are interpreted in the context of the Georgi-Machacek model.

0 data tables match query

Version 2
Search for vector-like quarks in events with two oppositely charged leptons and jets in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 79 (2019) 364, 2019.
Inspire Record 1711260 DOI 10.17182/hepdata.85746

A search for the pair production of heavy vector-like partners T and B of the top and bottom quarks has been performed by the CMS experiment at the CERN LHC using proton-proton collisions at $\sqrt{s} =$ 13 TeV. The data sample was collected in 2016 and corresponds to an integrated luminosity of 35.9 fb$^{-1}$. Final states studied for $\mathrm{T\overline{T}}$ production include those where one of the T quarks decays via T $\to$ tZ and the other via T $\to$ bW, tZ, or tH, where H is a Higgs boson. For the $\mathrm{B\overline{B}}$ case, final states include those where one of the B quarks decays via B $\to$ bZ and the other B $\to$ tW, bZ, or bH. Events with two oppositely charged electrons or muons, consistent with coming from the decay of a Z boson, and jets are investigated. The number of observed events is consistent with standard model background estimations. Lower limits at 95% confidence level are placed on the masses of the T and B quarks for a range of branching fractions. Assuming 100% branching fractions for T $\to$ tZ, and B $\to$ bZ, T and B quark mass values below 1280 and 1130 GeV, respectively, are excluded.

0 data tables match query

Search for supersymmetry in events with a photon, jets, b-jets, and missing transverse momentum in proton-proton collisions at 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 79 (2019) 444, 2019.
Inspire Record 1716137 DOI 10.17182/hepdata.88396

A search for supersymmetry is presented based on events with at least one photon, jets, and large missing transverse momentum produced in proton-proton collisions at a center-of-mass energy of 13 TeV. The data correspond to an integrated luminosity of 35.9 fb$^{-1}$ and were recorded at the LHC with the CMS detector in 2016. The analysis characterizes signal-like events by categorizing the data into various signal regions based on the number of jets, the number of b-tagged jets, and the missing transverse momentum. No significant excess of events is observed with respect to the expectations from standard model processes. Limits are placed on the gluino and top squark pair production cross sections using several simplified models of supersymmetric particle production with gauge-mediated supersymmetry breaking. Depending on the model and the mass of the next-to-lightest supersymmetric particle, the production of gluinos with masses as large as 2120 GeV and the production of top squarks with masses as large as 1230 GeV are excluded at 95% confidence level.

0 data tables match query

Measurement of the top quark polarization and $\mathrm{t\bar{t}}$ spin correlations using dilepton final states in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 100 (2019) 072002, 2019.
Inspire Record 1742786 DOI 10.17182/hepdata.90640

Measurements of the top quark polarization and top quark pair ($\mathrm{t\bar{t}}$) spin correlations are presented using events containing two oppositely charged leptons (e$^+$e$^-$, e$^\pm\mu^\mp$, or $\mu^+\mu^-$) produced in proton-proton collisions at a center-of-mass energy of 13 TeV. The data were recorded by the CMS experiment at the LHC in 2016 and correspond to an integrated luminosity of 35.9 fb$^{-1}$. A set of parton-level normalized differential cross sections, sensitive to each of the independent coefficients of the spin-dependent parts of the $\mathrm{t\bar{t}}$ production density matrix, is measured for the first time at 13 TeV. The measured distributions and extracted coefficients are compared with standard model predictions from simulations at next-to-leading-order (NLO) accuracy in quantum chromodynamics (QCD), and from NLO QCD calculations including electroweak corrections. All measurements are found to be consistent with the expectations of the standard model. The normalized differential cross sections are used in fits to constrain the anomalous chromomagnetic and chromoelectric dipole moments of the top quark to $-$0.24 $<C_\text{tG}/\Lambda^{2}$ $<$ 0.07 TeV$^{-2}$ and $-$0.33 $< C^{I}_\text{tG}/\Lambda^{2}$ $<$ 0.20 TeV$^{-2}$, respectively, at 95% confidence level.

0 data tables match query

Search for contact interactions and large extra dimensions in the dilepton mass spectra from proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 04 (2019) 114, 2019.
Inspire Record 1711231 DOI 10.17182/hepdata.89049

A search for nonresonant excesses in the invariant mass spectra of electron and muon pairs is presented. The analysis is based on data from proton-proton collisions at a center-of-mass energy of 13 TeV recorded by the CMS experiment in 2016, corresponding to a total integrated luminosity of 36 fb$^{-1}$. No significant deviation from the standard model is observed. Limits are set at 95% confidence level on energy scales for two general classes of nonresonant models. For a class of fermion contact interaction models, lower limits ranging from 20 to 32 TeV are set on the characteristic compositeness scale $\Lambda$. For the Arkani-Hamed, Dimopoulos, and Dvali model of large extra dimensions, the first results in the dilepton final state at 13 TeV are reported, and values of the ultraviolet cutoff parameter $\Lambda_\mathrm{T}$ below 6.9 TeV are excluded. A combination with recent CMS diphoton results improves this exclusion to $\Lambda_\mathrm{T}$ below 7.7 TeV, providing the most sensitive limits to date in nonhadronic final states.

0 data tables match query

Search for lepton-flavor violating decays of the Higgs boson in the $\mu\tau$ and e$\tau$ final states in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 104 (2021) 032013, 2021.
Inspire Record 1862497 DOI 10.17182/hepdata.104861

A search is presented for lepton-flavor violating decays of the Higgs boson to $\mu\tau$ and e$\tau$. The data set corresponds to an integrated luminosity of 137 fb$^{-1}$ collected at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV. No significant excess has been found, and the results are interpreted in terms of upper limits on lepton-flavor violating branching fractions of the Higgs boson. The observed (expected) upper limits on the branching fractions are, respectively, $\mathcal{B}($H $\to\mu\tau)$$\lt$ 0.15 (0.15)% and $\mathcal{B}($H$\to$e$\tau)$ $\lt$ 0.22 (0.16)% at 95% confidence level.

0 data tables match query

Version 2
Search for long-lived particles decaying in the CMS endcap muon detectors in proton-proton collisions at $\sqrt{s} = $ 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.Lett. 127 (2021) 261804, 2021.
Inspire Record 1883075 DOI 10.17182/hepdata.104408

A search for long-lived particles (LLPs) produced in decays of standard model (SM) Higgs bosons is presented. The data sample consists of 137 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} =$ 13 TeV, recorded at the LHC in 2016-2018. A novel technique is employed to reconstruct decays of LLPs in the endcap muon detectors. The search is sensitive to a broad range of LLP decay modes and to masses as low as a few GeV. No excess of events above the SM background is observed. The most stringent limits to date on the branching fraction of the Higgs boson to LLPs subsequently decaying to quarks and $\tau^+\tau^-$ are found for proper decay lengths greater than 6, 20, and 40 m, for LLP masses of 7, 15, and 40 GeV, respectively.

0 data tables match query

Measurement of the inclusive and differential Higgs boson production cross sections in the decay mode to a pair of $\tau$ leptons in pp collisions at $\sqrt{s} = $ 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.Lett. 128 (2022) 081805, 2022.
Inspire Record 1894790 DOI 10.17182/hepdata.105961

Measurements of the inclusive and differential fiducial cross sections of the Higgs boson are presented, using the $\tau$ lepton decay channel. The differential cross sections are measured as functions of the Higgs boson transverse momentum, jet multiplicity, and transverse momentum of the leading jet in the event if any. The analysis is performed using proton-proton data collected with the CMS detector at the LHC at a center-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 138 fb$^{-1}$. These are the first differential measurements of the Higgs boson cross section in the final state of two $\tau$ leptons, and they constitute a significant improvement over measurements in other final states in events with a large jet multiplicity or with a Lorentz-boosted Higgs boson.

0 data tables match query

Probing effective field theory operators in the associated production of top quarks with a Z boson in multilepton final states at $\sqrt{s} = $ 13 TeV

The CMS collaboration Lee, Kyeongpil ; Jain, Sandhya ; Wang, Jin ; et al.
JHEP 12 (2021) 083, 2021.
Inspire Record 1895530 DOI 10.17182/hepdata.105880

A search for new top quark interactions is performed within the framework of an effective field theory using the associated production of either one or two top quarks with a Z boson in multilepton final states. The data sample corresponds to an integrated luminosity of 138 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} =$ 13 TeV collected by the CMS experiment at the LHC. Five dimension-six operators modifying the electroweak interactions of the top quark are considered. Novel machine-learning techniques are used to enhance the sensitivity to effects arising from these operators. Distributions used for the signal extraction are parameterized in terms of Wilson coefficients describing the interaction strengths of the operators. All five Wilson coefficients are simultaneously fit to data and 95% confidence level intervals are computed. All results are consistent with the SM expectations.

0 data tables match query

Version 2
Measurement of the inclusive and differential $\mathrm{t\overline{t}}\gamma$ cross sections in the single-lepton channel and EFT interpretation at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 12 (2021) 180, 2021.
Inspire Record 1876579 DOI 10.17182/hepdata.102876

The production cross section of a top quark pair in association with a photon is measured in proton-proton collisions at a center-of-mass energy of 13 TeV. The data set, corresponding to an integrated luminosity of 137 fb$^{-1}$, was recorded by the CMS experiment during the 2016-2018 data taking of the LHC. The measurements are performed in a fiducial volume defined at the particle level. Events with an isolated, highly energetic lepton, at least three jets from the hadronization of quarks, among which at least one is b tagged, and one isolated photon are selected. The inclusive fiducial $\mathrm{t\overline{t}}\gamma$ cross section, for a photon with transverse momentum greater than 20 GeV and pseudorapidity $\lvert \eta\rvert$$\lt$ 1.4442, is measured to be 798 $\pm$ 7 (stat) $\pm$ 48 (syst) fb, in good agreement with the prediction from the standard model at next-to-leading order in quantum chromodynamics. The differential cross sections are also measured as a function of several kinematic observables and interpreted in the framework of the standard model effective field theory (EFT), leading to the most stringent direct limits to date on anomalous electromagnetic dipole moment interactions of the top quark and the photon.

0 data tables match query

Search for charged Higgs bosons produced in vector boson fusion processes and decaying into vector boson pairs in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 81 (2021) 723, 2021.
Inspire Record 1857811 DOI 10.17182/hepdata.102461

A search for charged Higgs bosons produced in vector boson fusion processes and decaying into vector bosons, using proton-proton collisions at $\sqrt{s} =$ 13 TeV at the LHC, is reported. The data sample corresponds to an integrated luminosity of 137 fb$^{-1}$ collected with the CMS detector. Events are selected by requiring two or three electrons or muons, moderate missing transverse momentum, and two jets with a large rapidity separation and a large dijet mass. No excess of events with respect to the standard model background predictions is observed. Model independent upper limits at 95% confidence level are reported on the product of the cross section and branching fraction for vector boson fusion production of charged Higgs bosons as a function of mass, from 200 to 3000 GeV. The results are interpreted in the context of the Georgi-Machacek model.

0 data tables match query

Version 2
Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at $\sqrt{s} = $ 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 11 (2021) 153, 2021.
Inspire Record 1894408 DOI 10.17182/hepdata.106115

A search is presented for new particles produced at the LHC in proton-proton collisions at $\sqrt{s} =$ 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb$^{-1}$, collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb$^{-1}$, collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.

0 data tables match query

Search for an exotic decay of the Higgs boson to a pair of light pseudoscalars in the final state with two muons and two b quarks in pp collisions at 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 795 (2019) 398-423, 2019.
Inspire Record 1709317 DOI 10.17182/hepdata.91235

A search for exotic decays of the Higgs boson to a pair of light pseudoscalar particles a$_1$ is performed under the hypothesis that one of the pseudoscalars decays to a pair of opposite sign muons and the other decays to b$\overline{\mathrm{b}}$. Such signatures are predicted in a number of extensions of the standard model (SM), including next-to-minimal supersymmetry and two-Higgs-doublet models with an additional scalar singlet. The results are based on a data set of proton-proton collisions corresponding to an integrated luminosity of 35.9 fb$^{-1}$, accumulated with the CMS experiment at the CERN LHC in 2016 at a centre-of-mass energy of 13 TeV. No statistically significant excess is observed with respect to the SM backgrounds in the search region for pseudoscalar masses from 20 GeV to half of the Higgs boson mass. Upper limits at 95% confidence level are set on the product of the production cross section and branching fraction, $\sigma_{\mathrm{h}}\mathcal{B}$(h $\to$ a$_1$ a$_1$ $\to$ $\mu^+\mu^-\mathrm{b}\bar{\mathrm{b}}$), ranging from 5 to 33 fb, depending on the pseudoscalar mass. Corresponding limits on the branching fraction, assuming the SM prediction for $\sigma_{\mathrm{h}}$, are (1$-$7)$\times$ 10$^{-4}$.

0 data tables match query

Search for supersymmetry with a compressed mass spectrum in the vector boson fusion topology with 1-lepton and 0-lepton final states in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 08 (2019) 150, 2019.
Inspire Record 1737508 DOI 10.17182/hepdata.88816

A search for supersymmetric particles produced in the vector boson fusion topology in proton-proton collisions is presented. The search targets final states with one or zero leptons, large missing transverse momentum, and two jets with a large separation in rapidity. The data sample corresponds to an integrated luminosity of 35.9 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} =$ 13 TeV collected in 2016 with the CMS detector at the LHC. The observed dijet invariant mass and lepton-neutrino transverse mass spectra are found to be consistent with the standard model predictions. Upper limits are set on the cross sections for chargino ($\widetilde\chi_1^\pm$) and neutralino ($\widetilde\chi_2^0$) production with two associated jets. For a compressed mass spectrum scenario in which the $\widetilde\chi_1^\pm$ and $\widetilde\chi_2^0$ decays proceed via a light slepton and the mass difference between the lightest neutralino $\widetilde\chi_1^0$ and the mass-degenerate particles $\widetilde\chi_1^\pm$ and $\widetilde\chi_2^0$ is 1 (30) GeV, the most stringent lower limit to date of 112 (215) GeV is set on the mass of these latter two particles.

0 data tables match query

Measurement of the top quark mass in the all-jets final state at $\sqrt{s}=$ 13 TeV and combination with the lepton+jets channel

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 79 (2019) 313, 2019.
Inspire Record 1711672 DOI 10.17182/hepdata.89051

A top quark mass measurement is performed using 35.9 fb$^{-1}$ of LHC proton-proton collision data collected with the CMS detector at $\sqrt{s} =$ 13 TeV. The measurement uses the $\mathrm{t\overline{t}}$ all-jets final state. A kinematic fit is performed to reconstruct the decay of the $\mathrm{t\overline{t}}$ system and suppress the multijet background. Using the ideogram method, the top quark mass ($m_\mathrm{t}$) is determined, simultaneously constraining an additional jet energy scale factor (JSF). The resulting value of $m_\mathrm{t}$ = 172.34 $\pm$ 0.20 (stat+JSF) $\pm$ 0.70 (syst) GeV is in good agreement with previous measurements. In addition, a combined measurement that uses the $\mathrm{t\overline{t}}$ lepton+jets and all-jets final states is presented, using the same mass extraction method, and provides an $m_\mathrm{t}$ measurement of 172.26 $\pm$ 0.07 (stat+JSF) $\pm$ 0.61 (syst) GeV. This is the first combined $m_\mathrm{t}$ extraction from the lepton+jets and all-jets channels through a single likelihood function.

0 data tables match query

Search for charged Higgs bosons in the H$^{\pm} \to \tau^{\pm}\nu_\tau$ decay channel in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 07 (2019) 142, 2019.
Inspire Record 1724676 DOI 10.17182/hepdata.90687

A search is presented for charged Higgs bosons in the H$^{\pm}$ $\to$ $\tau^{\pm}\nu_\tau$ decay mode in the hadronic final state and in final states with an electron or muon. The search is based on proton-proton collision data recorded by the CMS experiment in 2016 at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The results agree with the background expectation from the standard model. Upper limits at 95% confidence level are set on the production cross section times branching fraction to $\tau^{\pm}\nu_\tau$ for an H$^{\pm}$ in the mass range of 80 GeV to 3 TeV, including the region near the top quark mass. The observed limit ranges from 6 pb at 80 GeV to 5 fb at 3 TeV. The limits are interpreted in the context of the minimal supersymmetric standard model $m_\mathrm{h}^\mathrm{mod-}$ scenario.

0 data tables match query

Search for physics beyond the standard model in events with jets and two same-sign or at least three charged leptons in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 80 (2020) 752, 2020.
Inspire Record 1777617 DOI 10.17182/hepdata.90837

A data sample of events from proton-proton collisions with at least two jets, and two isolated same-sign or three or more charged leptons, is studied in a search for signatures of new physics phenomena. The data correspond to an integrated luminosity of 137 fb$^{-1}$ at a center-of-mass energy of 13 TeV, collected in 2016-2018 by the CMS experiment at the LHC. The search is performed using a total of 168 signal regions defined using several kinematic variables. The properties of the events are found to be consistent with the expectations from standard model processes. Exclusion limits at 95% confidence level are set on cross sections for the pair production of gluinos or squarks for various decay scenarios in the context of supersymmetric models conserving or violating R parity. The observed lower mass limits are as large as 2.1 TeV for gluinos and 0.9 TeV for top and bottom squarks. To facilitate reinterpretations, model-independent limits are provided in a set of simplified signal regions.

0 data tables match query

A measurement of the Higgs boson mass in the diphoton decay channel

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 805 (2020) 135425, 2020.
Inspire Record 1780985 DOI 10.17182/hepdata.93362

A measurement of the mass of the Higgs boson in the diphoton decay channel is presented. This analysis is based on 35.9 fb$^{-1}$ of proton-proton collision data collected during the 2016 LHC running period, with the CMS detector at a center-of-mass energy of 13 TeV. A refined detector calibration and new analysis techniques have been used to improve the precision of this measurement. The Higgs boson mass is measured to be $m_\mathrm{H} =$ 125.78 $\pm$ 0.26 GeV. This is combined with a measurement of $m_\mathrm{H}$ already performed in the H $\to$ ZZ $\to$ 4$\ell$ decay channel using the same data set, giving $m_\mathrm{H} =$ 125.46 $\pm$ 0.16 GeV. This result, when further combined with an earlier measurement of $m_\mathrm{H}$ using data collected in 2011 and 2012 with the CMS detector, gives a value for the Higgs boson mass of $m_\mathrm{H} =$ 125.38 $\pm$ 0.14 GeV. This is currently the most precise measurement of the mass of the Higgs boson.

0 data tables match query

Search for a low-mass $\tau^-\tau^+$ resonance in association with a bottom quark in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 05 (2019) 210, 2019.
Inspire Record 1726509 DOI 10.17182/hepdata.88348

A general search is presented for a low-mass $\tau^-\tau^+$ resonance produced in association with a bottom quark. The search is based on proton-proton collision data at a center-of-mass energy of 13 TeV collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The data are consistent with the standard model expectation. Upper limits at 95% confidence level on the cross section times branching fraction are determined for two signal models: a light pseudoscalar Higgs boson decaying to a pair of $\tau$ leptons produced in association with bottom quarks, and a low-mass boson X decaying to a $\tau$-lepton pair that is produced in the decay of a bottom-like quark B such that B $\to$ bX. Masses between 25 and 70 GeV are probed for the light pseudoscalar boson with upper limits ranging from 250 to 44 pb. Upper limits from 20 to 0.3 pb are set on B masses between 170 and 450 GeV for X boson masses between 20 and 70 GeV.

0 data tables match query

Search for long-lived particles decaying into displaced jets in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 99 (2019) 032011, 2019.
Inspire Record 1704319 DOI 10.17182/hepdata.88880

A search for long-lived particles decaying into jets is presented. Data were collected with the CMS detector at the LHC from proton-proton collisions at a center-of-mass energy of 13 TeV in 2016, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The search examines the distinctive topology of displaced tracks and secondary vertices. The selected events are found to be consistent with standard model predictions. For a simplified model in which long-lived neutral particles are pair produced and decay to two jets, pair production cross sections larger than 0.2 fb are excluded at 95% confidence level for a long-lived particle mass larger than 1000 GeV and proper decay lengths between 3 and 130 mm. Several supersymmetry models with gauge-mediated supersymmetry breaking or $R$-parity violation, where pair-produced long-lived gluinos or top squarks decay to several final-state topologies containing displaced jets, are also tested. For these models, in the mass ranges above 200 GeV, gluino masses up to 2300-2400 GeV and top squark masses up to 1350-1600 GeV are excluded for proper decay lengths approximately between 10 and 100 mm. These are the most restrictive limits to date on these models.

0 data tables match query

Measurement of the top quark forward-backward production asymmetry and the anomalous chromoelectric and chromomagnetic moments in pp collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 06 (2020) 146, 2020.
Inspire Record 1772050 DOI 10.17182/hepdata.95469

The parton-level top quark (t) forward-backward asymmetry and the anomalous chromoelectric ($\hat{d}_\mathrm{t}$) and chromomagnetic ($\hat{\mu}_\mathrm{t}$) moments have been measured using LHC pp collisions at a center-of-mass energy of 13 TeV, collected in the CMS detector in a data sample corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The linearized variable $A_\mathrm{FB}^{(1)}$ is used to approximate the asymmetry. Candidate $\mathrm{t\bar{t}}$ events decaying to a muon or electron and jets in final states with low and high Lorentz boosts are selected and reconstructed using a fit of the kinematic distributions of the decay products to those expected for $\mathrm{t\bar{t}}$ final states. The values found for the parameters are $A_\mathrm{FB}^{(1)} =$ 0.048 $^{+0.095}_{-0.087}$ (stat) $^{+0.020}_{-0.029}$ (syst), $\hat{\mu}_\mathrm{t} =-$ 0.024 $^{+0.013}_{-0.009}$ (stat) $^{+0.016}_{-0.011}$ (syst), and a limit is placed on the magnitude of $|\hat{d}_\mathrm{t}|$ $<$ 0.03 at 95% confidence level.

0 data tables match query

Observation of Higgs boson decay to bottom quarks

The CMS collaboration Sirunyan, A. M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 121 (2018) 121801, 2018.
Inspire Record 1691854 DOI 10.17182/hepdata.86132

The observation of the standard model (SM) Higgs boson decay to a pair of bottom quarks is presented. The main contribution to this result is from processes in which Higgs bosons are produced in association with a W or Z boson (VH), and are searched for in final states including 0, 1, or 2 charged leptons and two identified bottom quark jets. The results from the measurement of these processes in a data sample recorded by the CMS experiment in 2017, comprising 41.3 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} =$ 13 TeV, are described. When combined with previous VH measurements using data collected at $\sqrt{s}=$ 7, 8, and 13 TeV, an excess of events is observed at $m_\mathrm{H} =$ 125.09 GeV with a significance of 4.8 standard deviations, where the expectation for the SM Higgs boson is 4.9. The corresponding measured signal strength is 1.01 $\pm$ 0.22. The combination of this result with searches by the CMS experiment for H $\to\mathrm{b\overline{b}}$ in other production processes yields an observed (expected) significance of 5.6 (5.5) standard deviations and a signal strength of 1.04 $\pm$ 0.20.

0 data tables match query

Search for light pseudoscalar boson pairs produced from decays of the 125 GeV Higgs boson in final states with two muons and two nearby tracks in pp collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 800 (2020) 135087, 2020.
Inspire Record 1744267 DOI 10.17182/hepdata.90694

A search is presented for pairs of light pseudoscalar bosons, in the mass range from 4 to 15 GeV, produced from decays of the 125 GeV Higgs boson. The decay modes considered are final states that arise when one of the pseudoscalars decays to a pair of tau leptons, and the other one either into a pair of tau leptons or muons. The search is based on proton-proton collisions collected by the CMS experiment in 2016 at a center-of-mass energy of 13 TeV that correspond to an integrated luminosity of 35.9 fb${-1}$. The 2$\mu$2$\tau$ and 4$\tau$ channels are used in combination to constrain the product of the Higgs boson production cross section and the branching fraction into 4$\tau$ final state, $\sigma\mathcal{B}$, exploiting the linear dependence of the fermionic coupling strength of pseudoscalar bosons on the fermion mass. No significant excess is observed beyond the expectation from the standard model. The observed and expected upper limits at 95% confidence level on $\sigma\mathcal{B}$, relative to the standard model Higgs boson production cross section, are set respectively between 0.022 and 0.23 and between 0.027 and 0.19 in the mass range probed by the analysis.

0 data tables match query

Search for $W$ boson decays to three charged pions

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 122 (2019) 151802, 2019.
Inspire Record 1717867 DOI 10.17182/hepdata.90000

For the first time, a search for the rare decay of the W boson to three charged pions has been performed. Proton-proton collision data recorded by the CMS experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 77.3 fb$^{-1}$, have been analyzed. No significant excess is observed above the background expectation. An upper limit of 1.01 $\times$ 10$^{-6}$ is set at 95% confidence level on the branching fraction of the W boson to three charged pions. This provides a strong motivation for theoretical calculations of this branching fraction.

0 data tables match query

A portrait of the Higgs boson by the CMS experiment ten years after the discovery

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Nature 607 (2022) 60-68, 2022.
Inspire Record 2104672 DOI 10.17182/hepdata.127765

In July 2012, the ATLAS and CMS Collaborations at the CERN Large Hadron Collider announced the observation of a Higgs boson at a mass of around 125 GeV. Ten years later, and with the data corresponding to the production of 30 times larger number of Higgs bosons, we have learnt much more about the properties of the Higgs boson. The CMS experiment has observed the Higgs boson in numerous fermionic and bosonic decay channels, established its spin-parity quantum numbers, determined its mass and measured its production cross sections in various modes. Here the CMS Collaboration reports the most up-to-date combination of results on the properties of the Higgs boson, including the most stringent limit on the cross section for the production of a pair of Higgs bosons, on the basis of data from proton-proton collisions at a centre-of-mass energy of 13 TeV. Within the uncertainties, all these observations are compatible with the predictions of the standard model of elementary particle physics. Much evidence points to the fact that the standard model is a low-energy approximation of a more comprehensive theory. Several of the standard model issues originate in the sector of Higgs boson physics. An order of magnitude larger number of Higgs bosons, expected to be examined over the next fifteen years, will help deepen our understanding of this crucial sector.

0 data tables match query

Constraints on anomalous Higgs boson couplings using production and decay information in the four-lepton final state

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 775 (2017) 1-24, 2017.
Inspire Record 1608386 DOI 10.17182/hepdata.80811

A search is performed for anomalous interactions of the recently discovered Higgs boson using matrix element techniques with the information from its decay to four leptons and from associated Higgs boson production with two quark jets in either vector boson fusion or associated production with a vector boson. The data were recorded by the CMS experiment at the LHC at a center-of-mass energy of 13 TeV and correspond to an integrated luminosity of 38.6 inverse femtobarns. These data are combined with the data collected at center-of-mass energies of 7 and 8 TeV, corresponding to integrated luminosities of 5.1 and 19.7 inverse femtobarns, respectively. All observations are consistent with the expectations for the standard model Higgs boson.

0 data tables match query

Search for resonant and nonresonant Higgs boson pair production in the bblnulnu final state in proton-proton collisions at sqrt(s) = 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 01 (2018) 054, 2018.
Inspire Record 1615868 DOI 10.17182/hepdata.83195

Searches for resonant and nonresonant pair-produced Higgs bosons (HH) decaying respectively into ll nu nu, through either W or Z bosons, and bbbar are presented. The analyses are based on a sample of proton-proton collisions at sqrt(s) = 13 TeV, collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 35.9 inverse femtobarns. Data and predictions from the standard model are in agreement within uncertainties. For the standard model HH hypothesis, the data exclude at 95% confidence level a product of the production cross section and branching fraction larger than 72 fb, corresponding to 79 times the prediction, consistent with expectations. Constraints are placed on different scenarios considering anomalous couplings, which could affect the rate and kinematics of HH production. Upper limits at 95% confidence level are set on the production cross section of narrow-width spin-0 and spin-2 particles decaying to Higgs boson pairs, the latter produced with minimal gravity-like coupling.

0 data tables match query

Search for top squarks and dark matter particles in opposite-charge dilepton final states at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 97 (2018) 032009, 2018.
Inspire Record 1634253 DOI 10.17182/hepdata.79809

A search for new physics is presented in final states with two oppositely charged leptons (electrons or muons), jets identified as originating from b quarks, and missing transverse momentum ($p_\mathrm{T}^\text{miss}$). The search uses proton-proton collision data at $\sqrt{s}=$ 13 TeV amounting to 35.9 fb$^{-1}$ of integrated luminosity collected using the CMS detector in 2016. Hypothetical signal events are efficiently separated from the dominant $\mathrm{t}\overline{\mathrm{t}}$ background with requirements on $p_\mathrm{T}^\text{miss}$ and transverse mass variables. No significant deviation is observed from the expected background. Exclusion limits are set in the context of simplified supersymmetric models with pair-produced top squarks. For top squarks, decaying exclusively to a top quark and a neutralino, exclusion limits are placed at 95% confidence level on the mass of the lightest top squark up to 800 GeV and on the lightest neutralino up to 360 GeV. These results, combined with searches in the single-lepton and all-jet final states, raise the exclusion limits up to 1050 GeV for the lightest top squark and up to 500 GeV for the lightest neutralino. For top squarks undergoing a cascade decay through charginos and sleptons, the mass limits reach up to 1300 GeV for top squarks and up to 800 GeV for the lightest neutralino. The results are also interpreted in a simplified model with a dark matter (DM) particle coupled to the top quark through a scalar or pseudoscalar mediator. For light DM, mediator masses up to 100 (50) GeV are excluded for scalar (pseudoscalar) mediators. The result for the scalar mediator achieves some of the most stringent limits to date in this model.

0 data tables match query

Measurement of the underlying event activity in inclusive Z boson production in proton-proton collisions at $\sqrt{s} = $ 13 TeV

The CMS collaboration Sirunyan, A.M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 07 (2018) 032, 2018.
Inspire Record 1635889 DOI 10.17182/hepdata.80167

This paper presents a measurement of the underlying event activity in proton-proton collisions at a center-of-mass energy of 13 TeV, performed using inclusive Z boson production events collected with the CMS experiment at the LHC. The analyzed data correspond to an integrated luminosity of 2.1 fb$^{-1}$. The underlying event activity is quantified in terms of the charged particle multiplicity, as well as of the scalar sum of the charged particles' transverse momenta in different topological regions defined with respect to the Z boson direction. The distributions are unfolded to the stable particle level and compared with predictions from various Monte Carlo event generators, as well as with similar CDF and CMS measurements at center-of-mass energies of 1.96 and 7 TeV respectively.

0 data tables match query

Observation of electroweak production of same-sign W boson pairs in the two jet and two same-sign lepton final state in proton-proton collisions at $\sqrt{s} = $ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 120 (2018) 081801, 2018.
Inspire Record 1624170 DOI 10.17182/hepdata.81935

The first observation of electroweak production of same-sign W boson pairs in proton-proton collisions is reported. The data sample corresponds to an integrated luminosity of 35.9 fb$^{-1}$ collected at a center-of-mass energy of 13 TeV with the CMS detector at the LHC. Events are selected by requiring exactly two leptons (electrons or muons) of the same charge, moderate missing transverse momentum, and two jets with a large rapidity separation and a large dijet mass. The observed significance of the signal is 5.5 standard deviations, where a significance of 5.7 standard deviations is expected based on the standard model. The ratio of measured event yields to that expected from the standard model at leading-order is 0.90 $\pm$ 0.22. A cross section measurement in a fiducial region is reported. Bounds are given on the structure of quartic vector boson interactions in the framework of dimension-eight effective field theory operators and on the production of doubly charged Higgs bosons.

0 data tables match query

Search for supersymmetry in multijet events with missing transverse momentum in proton-proton collisions at 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 96 (2017) 032003, 2017.
Inspire Record 1594909 DOI 10.17182/hepdata.79412

A search for supersymmetry is presented based on multijet events with large missing transverse momentum produced in proton-proton collisions at a center-of-mass energy of sqrt(s) = 13 TeV. The data, corresponding to an integrated luminosity of 35.9 inverse femtobarns, were collected with the CMS detector at the CERN LHC in 2016. The analysis utilizes four-dimensional exclusive search regions defined in terms of the number of jets, the number of tagged bottom quark jets, the scalar sum of jet transverse momenta, and the magnitude of the vector sum of jet transverse momenta. No evidence for a significant excess of events is observed relative to the expectation from the standard model. Limits on the cross sections for the pair production of gluinos and squarks are derived in the context of simplified models. Assuming the lightest supersymmetric particle to be a weakly interacting neutralino, 95% confidence level lower limits on the gluino mass as large as 1800 to 1960 GeV are derived, and on the squark mass as large as 960 to 1390 GeV, depending on the production and decay scenario.

0 data tables match query

Measurements of properties of the Higgs boson decaying into the four-lepton final state in pp collisions at sqrt(s) = 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 11 (2017) 047, 2017.
Inspire Record 1608162 DOI 10.17182/hepdata.80189

Properties of the Higgs boson are measured in the H to ZZ to 4l (l= e, mu) decay channel. A data sample of proton-proton collisions at sqrt(s) = 13 TeV, collected with the CMS detector at the LHC and corresponding to an integrated luminosity of 35.9 inverse femtobarns is used. The signal strength modifier mu, defined as the ratio of the observed Higgs boson rate in the H to ZZ to 4l decay channel to the standard model expectation, is measured to be mu = 1.05 +0.19/-0.17 at m[H ]= 125.09 GeV, the combined ATLAS and CMS measurement of the Higgs boson mass. The signal strength modifiers for the individual Higgs boson production modes are also measured. The cross section in the fiducial phase space defined by the requirements on lepton kinematics and event topology is measured to be 2.92 +0.48/-0.44 (stat) +0.28/-0.24 (syst) fb, which is compatible with the standard model prediction of 2.76 +/- 0.14 fb. Differential cross sections are reported as a function of the transverse momentum of the Higgs boson, the number of associated jets, and the transverse momentum of the leading associated jet. The Higgs boson mass is measured to be m[H] = 125.26 +/- 0.21 GeV and the width is constrained using on-shell production to be Gamma[H] < 1.10 GeV, at 95% confidence level.

0 data tables match query

Measurement of the differential cross sections for the associated production of a W boson and jets in proton-proton collisions at sqrt(s) = 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 96 (2017) 072005, 2017.
Inspire Record 1610623 DOI 10.17182/hepdata.79859

A measurement of the differential cross sections for a W boson produced in association with jets in the muon decay channel is presented. The measurement is based on 13 TeV proton-proton collision data corresponding to an integrated luminosity of 2.2 inverse femtobarns, recorded by the CMS detector at the LHC. The cross sections are reported as functions of jet multiplicity, jet transverse momentum pT, jet rapidity, the scalar pT sum of the jets, and angular correlations between the muon and the jet for different jet multiplicities. The measured cross sections are in agreement with predictions that include multileg leading-order (LO) and next-to-LO matrix element calculations interfaced with parton showers, as well as a next-to-next-to-LO calculation for the W boson and one jet production.

0 data tables match query

Measurements of the pp$\to$ZZ production cross section and the Z$\to 4\ell$ branching fraction, and constraints on anomalous triple gauge couplings at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 78 (2018) 165, 2018.
Inspire Record 1625296 DOI 10.17182/hepdata.80152

Four-lepton production in proton-proton collisions, $\mathrm{pp}\to (\mathrm{Z}/ \gamma^*)(\mathrm{Z}/\gamma^*) \to 4\ell$, where $\ell = \mathrm{e}$ or $\mu$, is studied at a center-of-mass energy of 13 TeV with the CMS detector at the LHC. The data sample corresponds to an integrated luminosity of 35.9 fb$^{-1}$. The ZZ production cross section, $\sigma(\mathrm{pp} \to \mathrm{Z}\mathrm{Z}) = 17.2 \pm 0.5\text{ (stat) }\pm 0.7\text{ (syst) }\pm 0.4(\mathrm{theo}) \pm 0.4\text{ (lumi)}$ pb, measured using events with two opposite-sign, same-flavor lepton pairs produced in the mass region $60 < m_{\ell^+\ell^-} < $120 GeV, is consistent with standard model predictions. Differential cross sections are measured and are well described by the theoretical predictions. The Z boson branching fraction to four leptons is measured to be $\mathcal{B}(\mathrm{Z}\to 4\ell) = 4.8 \pm 0.2\text{ (stat) }\pm 0.2\text{ (syst) } \pm 0.1\text{ (theo) }\pm 0.1\text{ (lumi) }\times 10^{-6}$ for events with a four-lepton invariant mass in the range 80 $ < m_{4\ell} < $ 100 GeV and a dilepton mass $m_{\ell\ell} > $4 GeV for all opposite-sign, same-flavor lepton pairs. The results agree with standard model predictions. The invariant mass distribution of the four-lepton system is used to set limits on anomalous ZZZ and ZZ$\gamma$ couplings at 95% confidence level: $-0.0012 < f_4^\mathrm{Z} < 0.0010$, $-0.0010 < f_5^\mathrm{Z} < 0.0013$, $-0.0012 < f_4^{\gamma} < 0.0013$, $-0.0012 < f_5^{\gamma} < 0.0013$.

0 data tables match query

Search for supersymmetry in events with at least one photon, missing transverse momentum, and large transverse event activity in proton-proton collisions at sqrt(s) = 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 12 (2017) 142, 2017.
Inspire Record 1610629 DOI 10.17182/hepdata.79807

A search for physics beyond the standard model in final states with at least one photon, large transverse momentum imbalance, and large total transverse event activity is presented. Such topologies can be produced in gauge-mediated supersymmetry models in which pair-produced gluinos or squarks decay to photons and gravitinos via short-lived neutralinos. The data sample corresponds to an integrated luminosity of 35.9 inverse femtobarns of proton-proton collisions at sqrt(s) = 13 TeV recorded by the CMS experiment at the LHC in 2016. No significant excess of events above the expected standard model background is observed. The data are interpreted in simplified models of gluino and squark pair production, in which gluinos or squarks decay via neutralinos to photons. Gluino masses of up to 1.50-2.00 TeV and squark masses up to 1.30-1.65 TeV are excluded at 95% confidence level, depending on the neutralino mass and branching fraction.

0 data tables match query

Search for top squark pair production in pp collisions at sqrt(s)=13 TeV using single lepton events

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 10 (2017) 019, 2017.
Inspire Record 1605128 DOI 10.17182/hepdata.79417

A search for top squark pair production in pp collisions at sqrt(s) = 13 TeV is performed using events with a single isolated electron or muon, jets, and a large transverse momentum imbalance. The results are based on data collected in 2016 with the CMS detector at the LHC, corresponding to an integrated luminosity of 35.9 inverse femtobarns. No significant excess of events is observed above the expectation from standard model processes. Exclusion limits are set in the context of supersymmetric models of pair production of top squarks that decay either to a top quark and a neutralino or to a bottom quark and a chargino. Depending on the details of the model, we exclude top squarks with masses as high as 1120 GeV. Detailed information is also provided to facilitate theoretical interpretations in other scenarios of physics beyond the standard model.

0 data tables match query

Search for Supersymmetry in $pp$ Collisions at $\sqrt{s}=13\text{ }\text{ }\mathrm{TeV}$ in the Single-Lepton Final State Using the Sum of Masses of Large-Radius Jets

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 119 (2017) 151802, 2017.
Inspire Record 1599402 DOI 10.17182/hepdata.79414

Results are reported from a search for supersymmetric particles in proton-proton collisions in the final state with a single lepton; multiple jets, including at least one b-tagged jet; and large missing transverse momentum. The search uses a sample of proton-proton collision data at sqrt(s) = 13 TeV recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 35.9 inverse femtobarns. The observed event yields in the signal regions are consistent with those expected from standard model backgrounds. The results are interpreted in the context of simplified models of supersymmetry involving gluino pair production, with gluino decay into either on- or off-mass-shell top squarks. Assuming that the top squarks decay into a top quark plus a stable, weakly interacting neutralino, scenarios with gluino masses up to about 1.9 TeV are excluded at 95% confidence level for neutralino masses up to about 1 TeV.

0 data tables match query

Search for supersymmetry in proton-proton collisions at 13 TeV using identified top quarks

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 97 (2018) 012007, 2018.
Inspire Record 1633588 DOI 10.17182/hepdata.79808

A search for supersymmetry is presented based on proton-proton collision events containing identified hadronically decaying top quarks, no leptons, and an imbalance $p_\mathrm{T}^\text{miss}$ in transverse momentum. The data were collected with the CMS detector at the CERN LHC at a center-of-mass energy of 13 TeV, and correspond to an integrated luminosity of 35.9 fb$^{-1}$. Search regions are defined in terms of the multiplicity of bottom quark jet and top quark candidates, the $p_\mathrm{T}^\text{miss}$, the scalar sum of jet transverse momenta, and the $m_{\mathrm{T2}}$ mass variable. No statistically significant excess of events is observed relative to the expectation from the standard model. Lower limits on the masses of supersymmetric particles are determined at 95% confidence level in the context of simplified models with top quark production. For a model with direct top squark pair production followed by the decay of each top squark to a top quark and a neutralino, top squark masses up to 1020 GeV and neutralino masses up to 430 GeV are excluded. For a model with pair production of gluinos followed by the decay of each gluino to a top quark-antiquark pair and a neutralino, gluino masses up to 2040 GeV and neutralino masses up to 1150 GeV are excluded. These limits extend previous results.

0 data tables match query