Version 2
Probing small Bjorken-$x$ nuclear gluonic structure via coherent J/$\psi$ photoproduction in ultraperipheral PbPb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.Lett. 131 (2023) 262301, 2023.
Inspire Record 2648536 DOI 10.17182/hepdata.138867

Quasireal photons exchanged in relativistic heavy ion interactions are powerful probes of the gluonic structure of nuclei. The coherent J/$\psi$ photoproduction cross section in ultraperipheral lead-lead collisions is measured as a function of photon-nucleus center-of-mass energies per nucleon (W$^\text{Pb}_{\gamma\text{N}}$), over a wide range of 40 $\lt$ W$^\text{Pb}_{\gamma\text{N}}$$\lt$ 400 GeV. Results are obtained using data at the nucleon-nucleon center-of-mass energy of 5.02 TeV collected by the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of 1.52 nb$^{-1}$. The cross section is observed to rise rapidly at low W$^\text{Pb}_{\gamma\text{N}}$, and plateau above W$^\text{Pb}_{\gamma\text{N}}$$\approx$ 40 GeV, up to 400 GeV, a new regime of small Bjorken-$x$ ($\approx$ 6 $\times$ 10$^{-5}$) gluons being probed in a heavy nucleus. The observed energy dependence is not predicted by current quantum chromodynamic models.

0 data tables match query

Search for new physics in the $\tau$ lepton plus missing transverse momentum final state in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, A. ; Adam, W. ; Andrejkovic, J.W. ; et al.
JHEP 09 (2023) 051, 2023.
Inspire Record 2626189 DOI 10.17182/hepdata.135472

A search for physics beyond the standard model (SM) in the final state with a hadronically decaying tau lepton and a neutrino is presented. This analysis is based on data recorded by the CMS experiment from proton-proton collisions at a center-of-mass energy of 13 TeV at the LHC, corresponding to a total integrated luminosity of 138 fb$^{=1}$. The transverse mass spectrum is analyzed for the presence of new physics. No significant deviation from the SM prediction is observed. Limits are set on the production cross section of a W' boson decaying into a tau lepton and a neutrino. Lower limits are set on the mass of the sequential SM-like heavy charged vector boson and the mass of a quantum black hole. Upper limits are placed on the couplings of a new boson to the SM fermions. Constraints are put on a nonuniversal gauge interaction model and an effective field theory model. For the first time, upper limits on the cross section of $t$-channel leptoquark (LQ) exchange are presented. These limits are translated into exclusion limits on the LQ mass and on its coupling in the $t$-channel. The sensitivity of this analysis extends into the parameter space of LQ models that attempt to explain the anomalies observed in B meson decays. The limits presented for the various interpretations are the most stringent to date. Additionally, a model-independent limit is provided.

0 data tables match query

Version 2
Measurement of the top quark pole mass using $\mathrm{t\bar{t}}$+jet events in the dilepton final state in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 07 (2023) 077, 2023.
Inspire Record 2106483 DOI 10.17182/hepdata.127990

A measurement of the top quark pole mass $m_\mathrm{t}^\text{pole}$ in events where a top quark-antiquark pair ($\mathrm{t\bar{t}}$) is produced in association with at least one additional jet ($\mathrm{t\bar{t}}$+jet) is presented. This analysis is performed using proton-proton collision data at $\sqrt{s}$ = 13 TeV collected by the CMS experiment at the CERN LHC, corresponding to a total integrated luminosity of 36.3 fb$^{-1}$. Events with two opposite-sign leptons in the final state (e$^+$e$^-$, $\mu^+\mu^-$, e$^\pm\mu^\mp$) are analyzed. The reconstruction of the main observable and the event classification are optimized using multivariate analysis techniques based on machine learning. The production cross section is measured as a function of the inverse of the invariant mass of the $\mathrm{t\bar{t}}$+jet system at the parton level using a maximum likelihood unfolding. Given a reference parton distribution function (PDF), the top quark pole mass is extracted using the theoretical predictions at next-to-leading order. For the ABMP16NLO PDF, this results in $m_\mathrm{t}^\text{pole}$ = 172.93 $\pm$ 1.36 GeV.

0 data tables match query

Version 2
Search for Higgs boson pairs decaying to WW*WW*, WW*$\tau\tau$, and $\tau\tau\tau\tau$ in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 07 (2023) 095, 2023.
Inspire Record 2098277 DOI 10.17182/hepdata.130795

The results of a search for Higgs boson pair (HH) production in the WW*WW*, WW*$\tau\tau$, and $\tau\tau\tau\tau$ decay modes are presented. The search uses 138 fb$^{-1}$ of proton-proton collision data recorded by the CMS experiment at the LHC at a center-of-mass energy of 13 TeV from 2016 to 2018. Analyzed events contain two, three, or four reconstructed leptons, including electrons, muons, and hadronically decaying tau leptons. No evidence for a signal is found in the data. Upper limits are set on the cross section for nonresonant HH production, as well as resonant production in which a new heavy particle decays to a pair of Higgs bosons. For nonresonant production, the observed (expected) upper limit on the cross section at 95% confidence level (CL) is 21.3 (19.4) times the standard model (SM) prediction. The observed (expected) ratio of the trilinear Higgs boson self-coupling to its value in the SM is constrained to be within the interval $-$6.9 to 11.1 ($-$6.9 to 11.7) at 95% CL, and limits are set on a variety of new-physics models using an effective field theory approach. The observed (expected) limits on the cross section for resonant HH production range from 0.18 to 0.90 (0.08 to 1.06) pb at 95% CL for new heavy-particle masses in the range 250-1000 GeV.

0 data tables match query

Version 2
Observation of WW$\gamma$ production and search for H$\gamma$ production in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 132 (2024) 121901, 2024.
Inspire Record 2709669 DOI 10.17182/hepdata.144361

The observation of WW$\gamma$ production in proton-proton collisions at a center-of-mass energy of 13 TeV with an integrated luminosity of 138 fb$^{-1}$ is presented. The observed (expected) significance is 5.6 (5.1) standard deviations. Events are selected by requiring exactly two leptons (one electron and one muon) of opposite charge, moderate missing transverse momentum, and a photon. The measured fiducial cross section for WW$\gamma$ is 5.9 $\pm$ 0.8 (stat) $\pm$ 0.8 (syst) $\pm$ 0.7 (modeling) fb, in agreement with the next-to-leading order quantum chromodynamics prediction. The analysis is extended with a search for the associated production of the Higgs boson and a photon, which is generated by a coupling of the Higgs boson to light quarks. The result is used to constrain the Higgs boson couplings to light quarks.

0 data tables match query

Higher-order moments of the elliptic flow distribution in PbPb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 2024 (2024) 106, 2024.
Inspire Record 2724506 DOI 10.17182/hepdata.132638

The hydrodynamic flow-like behavior of charged hadrons in high-energy lead-lead collisions is studied through multiparticle correlations. The elliptic anisotropy values based on different orders of multiparticle cumulants, $v_{2}\{2k\}$, are measured up to the tenth order ($k$ = 5) as functions of the collision centrality at a nucleon-nucleon center-of-mass energy of $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV. The data were recorded by the CMS experiment at the LHC and correspond to an integrated luminosity of 0.607 nb$^{-1}$. A hierarchy is observed between the coefficients, with $v_{2}\{2\} > v_{2}\{4\} \gtrsim v_{2}\{6\} \gtrsim v_{2}\{8\} \gtrsim v_{2}\{10\}$. Based on these results, centrality-dependent moments for the fluctuation-driven event-by-event $v_{2}$ distribution are determined, including the skewness, kurtosis and, for the first time, superskewness. Assuming a hydrodynamic expansion of the produced medium, these moments directly probe the initial-state geometry in high-energy nucleus-nucleus collisions.

0 data tables match query

Combination of inclusive top-quark pair production cross-section measurements using ATLAS and CMS data at $\sqrt{s}= 7$ and 8 TeV

The ATLAS & CMS collaborations Aad, G. ; Abbott, B. ; Abbott, D.C. ; et al.
JHEP 07 (2023) 213, 2023.
Inspire Record 2088291 DOI 10.17182/hepdata.110250

A combination of measurements of the inclusive top-quark pair production cross-section performed by ATLAS and CMS in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV at the LHC is presented. The cross-sections are obtained using top-quark pair decays with an opposite-charge electron-muon pair in the final state and with data corresponding to an integrated luminosity of about 5 fb$^{-1}$ at $\sqrt{s}=7$ TeV and about 20 fb$^{-1}$ at $\sqrt{s}=8$ TeV for each experiment. The combined cross-sections are determined to be $178.5 \pm 4.7$ pb at $\sqrt{s}=7$ TeV and $243.3^{+6.0}_{-5.9}$ pb at $\sqrt{s}=8$ TeV with a correlation of 0.41, using a reference top-quark mass value of 172.5 GeV. The ratio of the combined cross-sections is determined to be $R_{8/7}= 1.363\pm 0.032$. The combined measured cross-sections and their ratio agree well with theory calculations using several parton distribution function (PDF) sets. The values of the top-quark pole mass (with the strong coupling fixed at 0.118) and the strong coupling (with the top-quark pole mass fixed at 172.5 GeV) are extracted from the combined results by fitting a next-to-next-to-leading-order plus next-to-next-to-leading-log QCD prediction to the measurements. Using a version of the NNPDF3.1 PDF set containing no top-quark measurements, the results obtained are $m_t^\text{pole} = 173.4^{+1.8}_{-2.0}$ GeV and $\alpha_\text{s}(m_Z)= 0.1170^{+ 0.0021}_{-0.0018}$.

0 data tables match query

Version 2
Inclusive nonresonant multilepton probes of new phenomena at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.D 105 (2022) 112007, 2022.
Inspire Record 2034279 DOI 10.17182/hepdata.110691

An inclusive search for nonresonant signatures of beyond the standard model (SM) phenomena in events with three or more charged leptons, including hadronically decaying $\tau$ leptons, is presented. The analysis is based on a data sample corresponding to an integrated luminosity of 138 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} =$ 13 TeV, collected by the CMS experiment at the LHC in 2016-2018. Events are categorized based on the lepton and b-tagged jet multiplicities and various kinematic variables. Three scenarios of physics beyond the SM are probed, and signal-specific boosted decision trees are used for enhancing sensitivity. No significant deviations from the background expectations are observed. Lower limits are set at 95% confidence level on the mass of type-III seesaw heavy fermions in the range 845-1065 GeV for various decay branching fraction combinations to SM leptons. Doublet and singlet vector-like $\tau$ lepton extensions of the SM are excluded for masses below 1045 GeV and in the mass range 125-150 GeV, respectively. Scalar leptoquarks decaying exclusively to a top quark and a lepton are excluded below 1.12-1.42 TeV, depending on the lepton flavor. For the type-III seesaw as well as the vector-like doublet model, these constraints are the most stringent to date. For the vector-like singlet model, these are the first constraints from the LHC experiments. Detailed results are also presented to facilitate alternative theoretical interpretations.

0 data tables match query

Search for flavor changing neutral current interactions of the top quark in final states with a photon and additional jets in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 109 (2024) 072004, 2024.
Inspire Record 2736549 DOI 10.17182/hepdata.129804

A search for the production of a top quark in association with a photon and additional jets via flavor changing neutral current interactions is presented. The analysis uses proton-proton collision data recorded by the CMS detector at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. The search is performed by looking for processes where a single top quark is produced in association with a photon, or a pair of top quarks where one of the top quarks decays into a photon and an up or charm quark. Events with an electron or a muon, a photon, one or more jets, and missing transverse momentum are selected. Multivariate analysis techniques are used to discriminate signal and standard model background processes. No significant deviation is observed over the predicted background. Observed (expected) upper limits are set on the branching fractions of top quark decays: $\mathcal{B}$(t $\to$ u$\gamma$) $\lt$ 0.95 $\times$ 10$^{-5}$ (1.20 $\times$ 10$^{-5}$) and $\mathcal{B}$(t $\to$ c$\gamma$) $\lt$ 1.51 $\times$ 10$^{-5}$ (1.54 $\times$ 10$^{-5}$) at 95% confidence level, assuming a single nonzero coupling at a time. The obtained limit for $\mathcal{B}$(t $\to$ u$\gamma$) is similar to the current best limit, while the limit for $\mathcal{B}$(t $\to$ c$\gamma$) is significantly tighter than previous results.

0 data tables match query

Search for long-lived heavy neutral leptons with lepton flavour conserving or violating decays to a jet and a charged lepton

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 03 (2024) 105, 2024.
Inspire Record 2735808 DOI 10.17182/hepdata.145688

A search for long-lived heavy neutral leptons (HNLs) is presented, which considers the hadronic final state and coupling scenarios involving all three lepton generations in the 2-20 GeV HNL mass range for the first time. Events comprising two leptons (electrons or muons) and jets are analyzed in a data sample of proton-proton collisions, recorded with the CMS experiment at the CERN LHC at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. A novel jet tagger, based on a deep neural network, has been developed to identify jets from an HNL decay using various features of the jet and its constituent particles. The network output can be used as a powerful discriminating tool to probe a broad range of HNL lifetimes and masses. Contributions from background processes are determined from data. No excess of events in data over the expected background is observed. Upper limits on the HNL production cross section are derived as functions of the HNL mass and the three coupling strengths $V_{\ell\mathrm{N}}$ to each lepton generation $\ell$ and presented as exclusion limits in the coupling-mass plane, as lower limits on the HNL lifetime, and on the HNL mass. In this search, the most stringent limit on the coupling strength is obtained for pure muon coupling scenarios; values of $\lvert V_{\mu\mathrm{N}}\rvert^{2}$$\gt $ 5 (4) $\times$ 10$^{-7}$ are excluded for Dirac (Majorana) HNLs with a mass of 10 GeV at a confidence level of 95% that correspond to proper decay lengths of 17 (10) mm.

0 data tables match query

Search for inelastic dark matter in events with two displaced muons and missing transverse momentum in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 132 (2024) 041802, 2024.
Inspire Record 2661228 DOI 10.17182/hepdata.140434

A search for dark matter in events with a displaced nonresonant muon pair and missing transverse momentum is presented. The analysis is performed using an integrated luminosity of 138 fb$^{-1}$ of proton-proton (pp) collision data at a center-of-mass energy of 13 TeV produced by the LHC in 2016-2018. No significant excess over the predicted backgrounds is observed. Upper limits are set on the product of the inelastic dark matter production cross section $\sigma$(pp $\to$ A' $\to$$\chi_1$$\chi_2$) and the decay branching fraction $\mathcal{B}$($\chi_2$$\to$$\chi_1 \mu^+ \mu^-$), where A' is a dark photon and $\chi_1$ and $\chi_2$ are states in the dark sector with near mass degeneracy. This is the first dedicated collider search for inelastic dark matter.

0 data tables match query

Search for direct production of GeV-scale resonances decaying to a pair of muons in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 12 (2023) 070, 2023.
Inspire Record 2704121 DOI 10.17182/hepdata.140424

A search for direct production of low-mass dimuon resonances is performed using $\sqrt{s}$ = 13 TeV proton-proton collision data collected by the CMS experiment during the 2017-2018 operation of the CERN LHC with an integrated luminosity of 96.6 fb$^{-1}$. The search exploits a dedicated high-rate trigger stream that records events with two muons with transverse momenta as low as 3 GeV but does not include the full event information. The search is performed by looking for narrow peaks in the dimuon mass spectrum in the ranges of 1.1-2.6 GeV and 4.2-7.9 GeV. No significant excess of events above the expectation from the standard model background is observed. Model-independent limits on production rates of dimuon resonances within the experimental fiducial acceptance are set. Competitive or world's best limits are set at 90% confidence level for a minimal dark photon model and for a scenario with two Higgs doublets and an extra complex scalar singlet (2HDM+S). Values of the squared kinetic mixing coefficient $\varepsilon^2$ in the dark photon model above 10$^{-6}$ are excluded over most of the mass range of the search. In the 2HDM+S, values of the mixing angle $\sin(\theta_\text{H})$ above 0.08 are excluded over most of the mass range of the search with a fixed ratio of the Higgs doublets vacuum expectation $\tan\beta$ = 0.5.

0 data tables match query

Search for dark matter particles in W$^+$W$^-$ events with transverse momentum imbalance in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 03 (2024) 134, 2024.
Inspire Record 2712865 DOI 10.17182/hepdata.139719

A search for dark matter particles is performed using events with a pair of W bosons and large missing transverse momentum. Candidate events are selected by requiring one or two leptons ($\ell =$ electrons or muons). The analysis is based on proton-proton collision data collected at a center-of-mass energy of 13 TeV by the CMS experiment at the LHC and corresponding to an integrated luminosity of 138 fb$^{-1}$. No significant excess over the expected standard model background is observed in the $\ell\nu$qq and 2$\ell$2$\nu$ final states of the W$^+$W$^-$ boson pair. Limits are set on dark matter production in the context of a simplified dark Higgs model, with a dark Higgs boson mass above the W$^+$W$^-$ mass threshold. The dark matter phase space is probed in the mass range 100-300 GeV, extending the scope of previous searches. Current exclusion limits are improved in the range of dark Higgs masses from 160 to 250 GeV, for a dark matter mass of 200 GeV.

0 data tables match query

Measurement of the $\tau$ lepton polarization in Z boson decays in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 01 (2024) 101, 2024.
Inspire Record 2702153 DOI 10.17182/hepdata.144221

The polarization of $\tau$ leptons is measured using leptonic and hadronic $\tau$ lepton decays in Z $\to$$\tau^+\tau^-$ events in proton-proton collisions at $\sqrt{s}$ = 13 TeV recorded by CMS at the CERN LHC with an integrated luminosity of 36.3 fb$^{-1}$. The measured $\tau^-$ polarization at the Z boson mass pole is $\mathcal{P}_{\tau}$(Z) = $-$0.144 $\pm$ 0.006 (stat) $\pm$ 0.014 (syst) = $-$0.144 $\pm$ 0.015, in good agreement with the measurement of the $\tau$ lepton asymmetry parameter of $A_{\tau}$ = 0.1439 $\pm$ 0.0043 = $-\mathcal{P}_{\tau}$(Z) at LEP. The $\tau$ polarization depends on the ratio of the vector to axial-vector couplings of the $\tau$ leptons in the neutral current expression, and thus on the effective weak mixing angle $\sin^{2}\theta_\mathrm{W}^{\text{eff}}$, independently of the Z boson production mechanism. The obtained value $\sin^{2}\theta_\mathrm{W}^{\text{eff}}$ = 0.2319 $\pm$ 0.0008 (stat) $\pm$ 0.0018 (syst) = 0.2319 $\pm$ 0.0019 is in good agreement with measurements at e$^+$e$^-$ colliders.

0 data tables match query

Measurement of the Higgs boson production via vector boson fusion and its decay into bottom quarks in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 01 (2024) 173, 2024.
Inspire Record 2684710 DOI 10.17182/hepdata.142036

A measurement of the Higgs boson (H) production via vector boson fusion (VBF) and its decay into a bottom quark-antiquark pair ($\mathrm{b\bar{b}}$) is presented using proton-proton collision data recorded by the CMS experiment at $\sqrt{s}$ = 13 TeV and corresponding to an integrated luminosity of 90.8 fb$^{-1}$. Treating the gluon-gluon fusion process as a background and constraining its rate to the value expected in the standard model (SM) within uncertainties, the signal strength of the VBF process, defined as the ratio of the observed signal rate to that predicted by the SM, is measured to be $\mu^\text{qqH}_\mathrm{Hb\bar{b}}$ = 1.01 $^{+0.55}_{-0.46}$. The VBF signal is observed with a significance of 2.4 standard deviations relative to the background prediction, while the expected significance is 2.7 standard deviations. Considering inclusive Higgs boson production and decay into bottom quarks, the signal strength is measured to be $\mu^\text{incl.}_\mathrm{Hb\bar{b}}$ = 0.99 $^{+0.48}_{-0.41}$, corresponding to an observed (expected) significance of 2.6 (2.9) standard deviations.

0 data tables match query

Search for supersymmetry in final states with a single electron or muon using angular correlations and heavy-object identification in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 09 (2023) 149, 2023.
Inspire Record 2182749 DOI 10.17182/hepdata.135454

A search for supersymmetry is presented in events with a single charged lepton, electron or muon, and multiple hadronic jets. The data correspond to an integrated luminosity of 138 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of 13 TeV, recorded by the CMS experiment at the CERN LHC. The search targets gluino pair production, where the gluinos decay into final states with the lightest supersymmetric particle (LSP) and either a top quark-antiquark ($\mathrm{t\bar{t}}$) pair, or a light-flavor quark-antiquark ($\mathrm{q\bar{q}}$) pair and a virtual or on-shell W boson. The main backgrounds, $\mathrm{t\bar{t}}$ pair and W+jets production, are suppressed by requirements on the azimuthal angle between the momenta of the lepton and of its reconstructed parent W boson candidate, and by top quark and W boson identification based on a machine-learning technique. The number of observed events is consistent with the expectations from standard model processes. Limits are evaluated on supersymmetric particle masses in the context of two simplified models of gluino pair production. Exclusions for gluino masses reach up to 2120 (2050) GeV at 95% confidence level for a model with gluino decay to a $\mathrm{t\bar{t}}$ pair (a $\mathrm{q\bar{q}}$ pair and a W boson) and the LSP. For the same models, limits on the mass of the LSP reach up to 1250 (1070) GeV.

0 data tables match query

Measurement of the production cross section for a W boson in association with a charm quark in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Eur.Phys.J.C 84 (2024) 27, 2024.
Inspire Record 2685711 DOI 10.17182/hepdata.141611

The strange quark content of the proton is probed through the measurement of the production cross section for a W boson and a charm (c) quark in proton-proton collisions at a center-of-mass energy of 13 TeV. The analysis uses a data sample corresponding to a total integrated luminosity of 138 fb$^{-1}$ collected with the CMS detector at the LHC. The W bosons are identified through their leptonic decays to an electron or a muon, and a neutrino. Charm jets are tagged using the presence of a muon or a secondary vertex inside the jet. The W+c production cross section and the cross section ratio $R^\pm_\text{c}$ = $\sigma$(W$^+$+$\bar{\text{c}}$) / $\sigma$(W$^-$+$\text{c}$) are measured inclusively and differentially as functions of the transverse momentum and the pseudorapidity of the lepton originating from the W boson decay. The precision of the measurements is improved with respect to previous studies, reaching 1% in $R^\pm_\text{c}$. The precision of the measurements is improved with respect to previous studies, reaching 1% in $R^\pm_\text{c}$ = 0.950 $\pm$ 0.005 (stat) $\pm$ 0.010 (syst). The measurements are compared with theoretical predictions up to next-to-next-to-leading order in perturbative quantum chromodynamics.

0 data tables match query

Search for physics beyond the standard model in top quark production with additional leptons in the context of effective field theory

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 12 (2023) 068, 2023.
Inspire Record 2683863 DOI 10.17182/hepdata.138415

A search for new physics in top quark production with additional final-state leptons is performed using data collected by the CMS experiment in proton-proton collisions at $\sqrt{s}$ = 13 TeV at the LHC during 2016-2018. The data set corresponds to an integrated luminosity of 138 fb$^{-1}$. Using the framework of effective field theory (EFT), potential new physics effects are parametrized in terms of 26 dimension-six EFT operators. The impacts of EFT operators are incorporated through the event-level reweighting of Monte Carlo simulations, which allows for detector-level predictions. The events are divided into several categories based on lepton multiplicity, total lepton charge, jet multiplicity, and b-tagged jet multiplicity. Kinematic variables corresponding to the transverse momentum ($p_\mathrm{T}$) of the leading pair of leptons and/or jets as well as the $p_\mathrm{T}$ of on-shell Z bosons are used to extract the 95% confidence intervals of the 26 Wilson coefficients corresponding to these EFT operators. No significant deviation with respect to the standard model prediction is found.

0 data tables match query

Version 2
Observation of the rare decay of the $\eta$ meson to four muons

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 131 (2023) 091903, 2023.
Inspire Record 2657654 DOI 10.17182/hepdata.140340

A search for the rare $\eta$$\to$$\mu^+\mu^-\mu^+\mu^-$ double-Dalitz decay is performed using a sample of proton-proton collisions, collected by the CMS experiment at the CERN LHC with high-rate muon triggers in 2017-2018 and corresponding to an integrated luminosity of 101 fb$^{-1}$. A signal having a statistical significance well in excess of 5 standard deviations is observed. Using the $\eta$$\to$$\mu^+ \mu^-$ decay as normalization, the branching fraction $\mathcal{B}(\eta$$\to$$\mu^+\mu^-\mu^+\mu^-)$ = [5.0 $\pm$ 0.8 (stat) $\pm$ 0.7 (syst) $\pm$ 0.7 ($\mathcal{B}_{2\mu}$)] $\times$ 10$^{-9}$ is measured, where the last term is the uncertainty in the normalization channel branching fraction. This work achieves an improved precision of over five orders of magnitude compared to previous results, leading to the first measurement of this branching fraction, which is found to agree with theoretical predictions.

0 data tables match query

Search for scalar leptoquarks produced in lepton-quark collisions and coupled to $\tau$ leptons

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 132 (2024) 061801, 2024.
Inspire Record 2687527 DOI 10.17182/hepdata.141335

The first search for scalar leptoquarks produced in $\tau$-lepton-quark collisions is presented. It is based on a set of proton-proton collision data recorded with the CMS detector at the LHC at a center-of-mass energy of 13 TeV corresponding to an integrated luminosity of 138 fb$^{-1}$. The reconstructed final state consists of a jet, significant missing transverse momentum, and a $\tau$ lepton reconstructed through its hadronic or leptonic decays. Limits are set on the product of the leptoquark production cross section and branching fraction and interpreted as exclusions in the plane of the leptoquark mass and the leptoquark-$\tau$-quark coupling strength.

0 data tables match query

Version 2
Measurement and QCD analysis of double-differential inclusive jet cross sections in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 02 (2022) 142, 2022.
Inspire Record 1972986 DOI 10.17182/hepdata.115022

A measurement of the inclusive jet production in proton-proton collisions at the LHC at $\sqrt{s}$ = 13 TeV is presented. The double-differential cross sections are measured as a function of the jet transverse momentum $p_\mathrm{T}$ and the absolute jet rapidity $\lvert y \rvert$. The anti-$k_\mathrm{T}$ clustering algorithm is used with distance parameter of 0.4 (0.7) in a phase space region with jet $p_\mathrm{T}$ from 97 GeV up to 3.1 TeV and $\lvert y \rvert\lt$ 2.0. Data collected with the CMS detector are used, corresponding to an integrated luminosity of 36.3 fb$^{-1}$ (33.5 fb$^{-1}$). The measurement is used in a comprehensive QCD analysis at next-to-next-to-leading order, which results in significant improvement in the accuracy of the parton distributions in the proton. Simultaneously, the value of the strong coupling constant at the Z boson mass is extracted as $\alpha_\mathrm{S}$(Z) = 0.1170 $\pm$ 0.0019. For the first time, these data are used in a standard model effective field theory analysis at next-to-leading order, where parton distributions and the QCD parameters are extracted simultaneously with imposed constraints on the Wilson coefficient $c_1$ of 4-quark contact interactions. Note added: in the Addendum to this paper, available as Appendix B in this document, an improved value of $\alpha_\mathrm{S}$(Z) = 0.1166 $\pm$ 0.0017 has been extracted. This result supersedes the number in the above abstract of the original publication.

0 data tables match query

Study of charm hadronization with prompt $\Lambda^+_\mathrm{c}$ baryons in proton-proton and lead-lead collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 01 (2024) 128, 2024.
Inspire Record 2679262 DOI 10.17182/hepdata.135973

The production of prompt $\Lambda^+_\mathrm{c}$ baryons is measured via the exclusive decay channel $\Lambda^+_\mathrm{c}$$\to$ pK$^-\pi^+$ at a center-of-mass energy per nucleon pair of 5.02 TeV, using proton-proton (pp) and lead-lead (PbPb) collision data collected by the CMS experiment at the CERN LHC. The pp and PbPb data were obtained in 2017 and 2018 with integrated luminosities of 252 and 0.607 nb$^{-1}$, respectively. The measurements are performed within the $\Lambda^+_\mathrm{c}$ rapidity interval $\vert y \vert$$\lt$ 1 with transverse momentum ($p_\mathrm{T}$) ranges of 3-30 and 6-40 GeV/$c$ for pp and PbPb collisions, respectively. Compared to the yields in pp collisions scaled by the expected number of nucleon-nucleon interactions, the observed yields of $\Lambda^+_\mathrm{c}$ with $p_\mathrm{T}$$\gt$ 10 GeV/$c$ are strongly suppressed in PbPb collisions. The level of suppression depends significantly on the collision centrality. The $\Lambda^+_\mathrm{c}$ / D$^0$ production ratio is similar in PbPb and pp collisions at $p_\mathrm{T}$$\gt$ 10 GeV/$c$, suggesting that the coalescence process does not play a dominant role in prompt $\Lambda^+_\mathrm{c}$ baryon production at higher $p_\mathrm{T}$.

0 data tables match query

Version 2
Search for $CP$ violation in ttH and tH production in multilepton channels in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 07 (2023) 092, 2023.
Inspire Record 2132369 DOI 10.17182/hepdata.131043

The charge-parity ($CP$) structure of the Yukawa interaction between the Higgs (H) boson and the top quark is measured in a data sample enriched in the $\mathrm{t\bar{t}}$ and tH associated production, using 138 fb$^{-1}$ of data collected in proton-proton collisions at $\sqrt{s}$ = 13 TeV by the CMS experiment at the CERN LHC. The study targets events where the H boson decays via H $\to$ WW or H $\to$$\tau\tau$ and the top quarks decay via t $\to$ Wb: the W bosons decay either leptonically or hadronically, and final states characterized by the presence of at least two leptons are studied. Machine learning techniques are applied to these final states to enhance the separation of $CP$-even from $CP$-odd scenarios. Two-dimensional confidence regions are set on $\kappa_\mathrm{t}$ and $\tilde{\kappa}_\mathrm{t}$, which are respectively defined as the $CP$-even and $CP$-odd top-Higgs Yukawa coupling modifiers. No significant fractional $CP$-odd contributions, parameterized by the quantity $\lvert{f_{CP}^{\mathrm{Htt}}}\rvert$ are observed; the parameter is determined to be $\lvert{f_{CP}^{\mathrm{Htt}}}\rvert$ = 0.59 with an interval of (0.24, 0.81) at 68% confidence level. The results are combined with previous results covering the H $\to$ ZZ and H $\to$ $\gamma\gamma$ decay modes, yielding two- and one-dimensional confidence regions on $\kappa_\mathrm{t}$ and $\tilde{\kappa}_\mathrm{t}$, while $\lvert{f_{CP}^{\mathrm{Htt}}}\rvert$ is determined to be $\lvert{f_{CP}^{\mathrm{Htt}}}\rvert$ = 0.28 with an interval of $\lvert{f_{CP}^{\mathrm{Htt}}}\rvert$ $\lt$ 0.55 at 68% confidence level, in agreement with the standard model $CP$-even prediction of $\lvert{f_{CP}^{\mathrm{Htt}}}\rvert$ = 0.

0 data tables match query

Search for a high-mass dimuon resonance produced in association with b quark jets at $\sqrt{s}$=13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 10 (2023) 043, 2023.
Inspire Record 2678141 DOI 10.17182/hepdata.141455

A search for high-mass dimuon resonance production in association with one or more b quark jets is presented. The study uses proton-proton collision data collected with the CMS detector at the LHC corresponding to an integrated luminosity of 138 fb$^{-1}$ at a center-of-mass energy of 13 TeV. Model-independent limits are derived on the number of signal events with exactly one or more than one b quark jet. Results are also interpreted in a lepton-flavor-universal model with Z$'$ boson couplings to a bb quark pair ($g_\mathrm{b}$), an sb quark pair ($g_\mathrm{b}\delta_\mathrm{bs}$), and any same-flavor charged lepton ($g_\ell$) or neutrino pair ($g_\nu$), with $\left|g_{\nu}\right| = \left|g_\ell\right|$. For a Z$'$ boson with a mass $m_{\mathrm{Z}'}$ = 350 GeV (2 TeV) and $\left|\delta_\mathrm{bs}\right|$$\lt$ 0.25, the majority of the parameter space with 0.0057 $\lt$$\left|g_\ell\right|$$\lt$ 0.35 (0.25 $\lt$$\left|g_\ell\right|$$\lt$ 0.43) and 0.0079 $\lt$$\left|g_\mathrm{b}\right|$$\lt$ 0.46 (0.34 $\lt$$\left|g_\mathrm{b}\right|$$\lt$ 0.57) is excluded at 95% confidence level. Finally, constraints are set on a Z$'$ model with parameters consistent with low-energy b $\to$ s$\ell\ell$ measurements. In this scenario, most of the allowed parameter space is excluded for a Z$'$ boson with 350 $\lt m_{\mathrm{Z}'}$ $\lt$ 500 GeV, while the constraints are less stringent for higher $m_{\mathrm{Z}'}$ hypotheses. This is the first dedicated search at the LHC for a high-mass dimuon resonance produced in association with multiple b quark jets, and the constraints obtained on models with this signature are the most stringent to date.

0 data tables match query

Search for Z' bosons decaying to pairs of heavy Majorana neutrinos in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 11 (2023) 181, 2023.
Inspire Record 2677273 DOI 10.17182/hepdata.141323

A search for the production of pairs of heavy Majorana neutrinos (N$_\ell$) from the decays of Z' bosons is performed using the CMS detector at the LHC. The data were collected in proton-proton collisions at a center-of-mass energy of $\sqrt{s}$ = 13 TeV, with an integrated luminosity of 138 fb$^{-1}$. The signature for the search is an excess in the invariant mass distribution of the final-state objects, two same-flavor leptons (e or $\mu$) and at least two jets. No significant excess of events beyond the expected background is observed. Upper limits at 95% confidence level are set on the product of the Z' production cross section and its branching fraction to a pair of N$_\ell$, as functions of N$_\ell$ and Z' boson masses ($m_{\mathrm{N}_\ell}$ and $m_\mathrm{Z'}$, respectively) for $m_\mathrm{Z'}$ from 0.4 to 4.6 TeV and $m_{\mathrm{N}_\ell}$ from 0.1 TeV to $m_\mathrm{Z'}$/2. In the theoretical framework of a left-right symmetric model, exclusion bounds in the $m_{\mathrm{N}_\ell}-m_\mathrm{Z'}$ plane are presented in both the electron and muon channels. The observed upper limit on $m_\mathrm{Z'}$ reaches up to 4.42 TeV. These are the most restrictive limits to date on the mass of N$_\ell$ as a function of the Z' boson mass.

0 data tables match query

Observation of new structure in the J/$\psi$J/$\psi$ mass spectrum in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 132 (2024) 111901, 2024.
Inspire Record 2668013 DOI 10.17182/hepdata.141028

A search is reported for near-threshold structures in the J/$\psi$J/$\psi$ invariant mass spectrum produced in proton-proton collisions at $\sqrt{s}$ = 13 TeV from data collected by the CMS experiment, corresponding to an integrated luminosity of 135 fb$^{-1}$. Three structures are found, and a model with quantum interference among these structures provides a good description of the data. A new structure is observed with a significance above 5 standard deviations at a mass of 6638 $^{+43}_{-38}$ (stat) $^{+16}_{-31}$ (syst) MeV. Another structure with even higher significance is found at a mass of 6847 $^{+44}_{-28}$ (stat) $^{+48}_{-20}$ (syst) MeV, which is consistent with the X(6900) resonance reported by the LHCb experiment and confirmed by the ATLAS experiment. Evidence for another new structure, with a local significance of 4.7 standard deviations, is found at a mass of 7134 $^{+48}_{-25}$ (stat) $^{+41}_{-15}$ (syst) MeV. Results are also reported for a model without interference, which does not fit the data as well and shows mass shifts up to 150 MeV relative to the model with interference.

0 data tables match query

Search for the lepton-flavor violating decay of the Higgs boson and additional Higgs bosons in the e$\mu$ final state in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 108 (2023) 072004, 2023.
Inspire Record 2663255 DOI 10.17182/hepdata.139722

A search for the lepton-flavor violating decay of the Higgs boson and potential additional Higgs bosons with a mass in the range 110-160 GeV to an e$^{\pm}\mu^{\mp}$ pair is presented. The search is performed with a proton-proton collision dataset at a center-of-mass energy of 13 TeV collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 138 fb$^{-1}$. No excess is observed for the Higgs boson. The observed (expected) upper limit on the e$^{\pm}\mu^{\mp}$ branching fraction for it is determined to be 4.4 (4.7) $\times$ 10$^{-5}$ at 95% confidence level, the most stringent limit set thus far from direct searches. The largest excess of events over the expected background in the full mass range of the search is observed at an e$^{\pm}\mu^{\mp}$ invariant mass of approximately 146 GeV with a local (global) significance of 3.8 (2.8) standard deviations.

0 data tables match query

Two-particle Bose-Einstein correlations and their Lévy parameters in PbPb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.C 109 (2024) 024914, 2024.
Inspire Record 2670243 DOI 10.17182/hepdata.134676

Two-particle Bose-Einstein momentum correlation functions are studied for charged-hadron pairs in lead-lead collisions at a center-of-mass energy per nucleon pair of $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV. The data sample, containing 4.27 $\times$$10^{9}$ minimum bias events corresponding to an integrated luminosity of 0.607 nb$^{-1}$, was collected by the CMS experiment in 2018. The experimental results are discussed in terms of a Lévy-type source distribution. The parameters of this distribution are extracted as functions of particle pair average transverse mass and collision centrality. These parameters include the Lévy index or shape parameter ($\alpha$), the Lévy scale parameter ($R$), and the correlation strength parameter ($\lambda$). The source shape, characterized by $\alpha$, is found to be neither Cauchy nor Gaussian, implying the need for a full Lévy analysis. Similarly to what was previously found for systems characterized by Gaussian source radii, a hydrodynamical scaling is observed for the Lévy $R$ parameter. The $\lambda$ parameter is studied in terms of the core-halo model.

0 data tables match query

Measurements of the azimuthal anisotropy of prompt and nonprompt charmonia in PbPb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 10 (2023) 115, 2023.
Inspire Record 2663026 DOI 10.17182/hepdata.130962

The second-order ($v_2$) and third-order ($v_3$) Fourier coefficients describing the azimuthal anisotropy of prompt and nonprompt (from b-hadron decays) J/$\psi$, as well as prompt $\psi$(2S) mesons are measured in lead-lead collisions at a center-of-mass energy per nucleon pair of $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV. The analysis uses a data set corresponding to an integrated luminosity of 1.61 nb$^{-1}$ recorded with the CMS detector. The J/$\psi$ and $\psi$(2S) mesons are reconstructed using their dimuon decay channel. The $v_2$ and $v_3$ coefficients are extracted using the scalar product method and studied as functions of meson transverse momentum and collision centrality. The measured $v_2$ values for prompt J/$\psi$ mesons are found to be larger than those for nonprompt J/$\psi$ mesons. The prompt J/$\psi$$v_2$ values at high $p_\mathrm{T}$ are found to be underpredicted by a model incorporating only parton energy loss effects in a quark-gluon plasma medium. Prompt and nonprompt J/$\psi$ meson $v_3$ and prompt $\psi$(2S) $v_2$ and $v_3$ values are also reported for the first time, providing new information about heavy quark interactions in the hot and dense medium created in heavy ion collisions.

0 data tables match query

Version 3
Search for higgsinos decaying to two Higgs bosons and missing transverse momentum in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 05 (2022) 014, 2022.
Inspire Record 2009652 DOI 10.17182/hepdata.114414

Results are presented from a search for physics beyond the standard model in proton-proton collisions at $\sqrt{s} =$ 13 TeV in channels with two Higgs bosons, each decaying via the process H $\to$$\mathrm{b\bar{b}}$, and large missing transverse momentum. The search uses a data sample corresponding to an integrated luminosity of 137 fb$^{-1}$ collected by the CMS experiment at the CERN LHC. The search is motivated by models of supersymmetry that predict the production of neutralinos, the neutral partners of the electroweak gauge and Higgs bosons. The observed event yields in the signal regions are found to be consistent with the standard model background expectations. The results are interpreted using simplified models of supersymmetry. For the electroweak production of nearly mass-degenerate higgsinos, each of whose decay chains yields a neutralino ($\tilde{\chi}^0_1$) that in turn decays to a massless goldstino and a Higgs boson, $\tilde{\chi}^0_1$ masses in the range 175 to 1025 GeV are excluded at 95% confidence level. For the strong production of gluino pairs decaying via a slightly lighter $\tilde{\chi}^0_2$ to H and a light $\tilde{\chi}^0_1$, gluino masses below 2330 GeV are excluded.

0 data tables match query

Search for resonances in events with photon and jet final states in proton-proton collisions at $\sqrt{s}$= 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 12 (2023) 189, 2023.
Inspire Record 2659689 DOI 10.17182/hepdata.139903

A search for resonances in events with the $\gamma$+jet final state has been performed using proton-proton collision data collected at $\sqrt{s}$ = 13 TeV by the CMS experiment at the LHC. The total data analyzed correspond to an integrated luminosity of 138 fb$^{-1}$. Models of excited quarks and quantum black holes are considered. Using a wide-jet reconstruction for the candidate jet, the $\gamma$+jet invariant mass spectrum measured in data is examined for the presence of resonances over the standard model continuum background. The background is estimated by fitting the mass distribution with a functional form. The data exhibit no statistically significant deviations from the expected standard model background. Exclusion limits at 95% confidence level on the resonance mass and other parameters are set. Excited light-flavor quarks (excited bottom quarks) are excluded up to a mass of 6.0 (3.8) TeV. Quantum black hole production is excluded for masses up to 7.5 (5.2) TeV in the Arkani-Hamed-Dimopoulos-Dvali (Randall-Sundrum) model. These lower mass bounds are the most stringent to date among those obtained in the $\gamma$+jet final state.

0 data tables match query

Measurements of inclusive and differential cross sections for the Higgs boson production and decay to four-leptons in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 08 (2023) 040, 2023.
Inspire Record 2659285 DOI 10.17182/hepdata.140341

Measurements of the inclusive and differential fiducial cross sections for the Higgs boson production in the H → ZZ → 4ℓ (ℓ = e, μ) decay channel are presented. The results are obtained from the analysis of proton-proton collision data recorded by the CMS experiment at the CERN LHC at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb$^{−1}$. The measured inclusive fiducial cross section is 2.73 ± 0.26 fb, in agreement with the standard model expectation of 2.86 ± 0.1 fb. Differential cross sections are measured as a function of several kinematic observables sensitive to the Higgs boson production and decay to four leptons. A set of double-differential measurements is also performed, yielding a comprehensive characterization of the four leptons final state. Constraints on the Higgs boson trilinear coupling and on the bottom and charm quark coupling modifiers are derived from its transverse momentum distribution. All results are consistent with theoretical predictions from the standard model.

0 data tables match query

Measurement of the jet mass distribution and top quark mass in hadronic decays of boosted top quarks in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Eur.Phys.J.C 83 (2023) 560, 2023.
Inspire Record 2175946 DOI 10.17182/hepdata.130712

A measurement of the jet mass distribution in hadronic decays of Lorentz-boosted top quarks is presented. The measurement is performed in the lepton+jets channel of top quark pair production ($\mathrm{t\bar{t}}$) events, where the lepton is an electron or muon. The products of the hadronic top quark decay are reconstructed using a single large-radius jet with transverse momentum greater than 400 GeV. The data were collected with the CMS detector at the LHC in proton-proton collisions and correspond to an integrated luminosity of 138 fb$^{-1}$. The differential $\mathrm{t\bar{t}}$ production cross section as a function of the jet mass is unfolded to the particle level and is used to extract the top quark mass. The jet mass scale is calibrated using the hadronic W boson decay within the large-radius jet. The uncertainties in the modelling of the final state radiation are reduced by studying angular correlations in the jet substructure. These developments lead to a significant increase in precision, and a top quark mass of 173.06 $\pm$ 0.84 GeV.

0 data tables match query

Version 2
Search for long-lived particles using out-of-time trackless jets in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 07 (2023) 210, 2023.
Inspire Record 2613855 DOI 10.17182/hepdata.135827

A search for long-lived particles decaying in the outer regions of the CMS silicon tracker or in the calorimeters is presented. The search is based on a data sample of proton-proton collisions at $\sqrt{s}$ = 13 TeV recorded with the CMS detector at the LHC in 2016-2018, corresponding to an integrated luminosity of 138 fb$^{-1}$. A novel technique, using trackless and out-of-time jet information combined in a deep neural network discriminator, is employed to identify decays of long-lived particles. The results are interpreted in a simplified model of chargino-neutralino production, where the neutralino is the next-to-lightest supersymmetric particle, is long-lived, and decays to a gravitino and either a Higgs or Z boson. This search is most sensitive to neutralino proper decay lengths of approximately 0.5 m, for which masses up to 1.18 TeV are excluded at 95% confidence level. The current search is the best result to date in the mass range from the kinematic limit imposed by the Higgs mass up to 1.8 TeV.

0 data tables match query

First measurement of the top quark pair production cross section in proton-proton collisions at $\sqrt{s}$ = 13.6 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 08 (2023) 204, 2023.
Inspire Record 2648595 DOI 10.17182/hepdata.135832

The first measurement of the top quark pair ($\mathrm{t\bar{t}}$) production cross section in proton-proton collisions at $\sqrt{s}$ = 13.6 TeV is presented. Data recorded with the CMS detector at the CERN LHC in Summer 2022, corresponding to an integrated luminosity of 1.21 fb$^{-1}$, are analyzed. Events are selected with one or two charged leptons (electrons or muons) and additional jets. A maximum likelihood fit is performed in event categories defined by the number and flavors of the leptons, the number of jets, and the number of jets identified as originating from b quarks. An inclusive $\mathrm{t\bar{t}}$ production cross section of 881 $\pm$ 23 (stat+syst) $\pm$ 20 (lumi) pb is measured, in agreement with the standard model prediction of 924 $^{+32}_{-40}$ pb.

0 data tables match query

Search for a charged Higgs boson decaying into a heavy neutral Higgs boson and a W boson in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 09 (2023) 032, 2023.
Inspire Record 2105345 DOI 10.17182/hepdata.130491

A search for a charged Higgs boson H$^\pm$ decaying into a heavy neutral Higgs boson H and a W boson is presented. The analysis targets the H decay into a pair of tau leptons with at least one of them decaying hadronically and with an additional electron or muon present in the event. The search is based on proton-proton collision data recorded by the CMS experiment during 2016-2018 at $\sqrt{s}$ = 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. The data are consistent with standard model background expectations. Upper limits at 95% confidence level are set on the product of the cross section and branching fraction for an H$^\pm$ in the mass range of 300-700 GeV, assuming an H with a mass of 200 GeV. The observed limits range from 0.085 pb for an H$^\pm$ mass of 300 GeV to 0.019 pb for a mass of 700 GeV. These are the first limits on H$^\pm$ production in the H$^\pm$ $\to$ HW$^\pm$ decay channel at the LHC.

0 data tables match query

Version 2
Measurement of the Higgs boson inclusive and differential fiducial production cross sections in the diphoton decay channel with pp collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 07 (2023) 091, 2023.
Inspire Record 2142341 DOI 10.17182/hepdata.132906

The measurements of the inclusive and differential fiducial cross sections of the Higgs boson decaying to a pair of photons are presented. The analysis is performed using proton-proton collisions data recorded with the CMS detector at the LHC at a centre-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 137 fb$^{-1}$. The inclusive fiducial cross section is measured to be $\sigma_\mathrm{fid}$ = 73.4 $_{-5.3}^{+5.4}$ (stat) ${}_{-2.2}^{+2.4}$ (syst) fb, in agreement with the standard model expectation of 75.4 $\pm$ 4.1 fb. The measurements are also performed in fiducial regions targeting different production modes and as function of several observables describing the diphoton system, the number of additional jets present in the event, and other kinematic observables. Two double differential measurements are performed. No significant deviations from the standard model expectations are observed.

0 data tables match query

Measurement of prompt open-charm production cross sections in proton-proton collisions at $\sqrt{s} = $ 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Ambrogi, Federico ; et al.
JHEP 11 (2021) 225, 2021.
Inspire Record 1876550 DOI 10.17182/hepdata.104924

The production cross sections for prompt open-charm mesons in proton-proton collisions at a center-of-mass energy of 13 TeV are reported. The measurement is performed using a data sample collected by the CMS experiment corresponding to an integrated luminosity of 29 nb$^{-1}$. The differential production cross sections of the D$^{*\pm}$, D$^\pm$, and D$^0$ ($\overline{\mathrm{D}}^{0}$) mesons are presented in ranges of transverse momentum and pseudorapidity 4 $\lt$$p_\mathrm{T}$$\lt$ 100 GeV and $\lvert\eta\rvert$$\lt$ 2.1, respectively. The results are compared to several theoretical calculations and to previous measurements.

0 data tables match query

Search for new physics in the lepton plus missing transverse momentum final state in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 07 (2022) 067, 2022.
Inspire Record 2618188 DOI 10.17182/hepdata.106058

A search for physics beyond the standard model (SM) in final states with an electron or muon and missing transverse momentum is presented. The analysis uses data from proton-proton collisions at a centre-of-mass energy of 13 TeV, collected with the CMS detector at the LHC in 2016–2018 and corresponding to an integrated luminosity of 138 fb−1. No significant deviation from the SM prediction is observed. Model-independent limits are set on the production cross section of W’ bosons decaying into lepton-plus-neutrino final states. Within the framework of the sequential standard model, with the combined results from the electron and muon decay channels a W’ boson with mass less than 5.7 TeV is excluded at 95% confidence level. Results on a SM precision test, the determination of the oblique electroweak W parameter, are presented using LHC data for the first time. These results together with those from the direct W’ resonance search are used to extend existing constraints on composite Higgs scenarios. This is the first experimental exclusion on compositeness parameters using results from LHC data other than Higgs boson measurements.

0 data tables match query

Version 3
High precision measurements of Z boson production in PbPb collisions at $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 127 (2021) 102002, 2021.
Inspire Record 1915909 DOI 10.17182/hepdata.95231

The CMS experiment at the LHC has measured the differential cross sections of Z bosons decaying to pairs of leptons, as functions of transverse momentum and rapidity, in lead-lead collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV. The measured Z boson elliptic azimuthal anisotropy coefficient is compatible with zero, showing that Z bosons do not experience significant final-state interactions in the medium produced in the collision. Yields of Z bosons are compared to Glauber model predictions and are found to deviate from these expectations in peripheral collisions, indicating the presence of initial collision geometry and centrality selection effects. The precision of the measurement allows, for the first time, for a data-driven determination of the nucleon-nucleon integrated luminosity as a function of lead-lead centrality, thereby eliminating the need for its estimation based on a Glauber model.

0 data tables match query

A search for decays of the Higgs boson to invisible particles in events with a top-antitop quark pair or a vector boson in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Eur.Phys.J.C 83 (2023) 933, 2023.
Inspire Record 2637936 DOI 10.17182/hepdata.137761

A search for decays to invisible particles of Higgs bosons produced in association with a top-antitop quark pair or a vector boson, which both decay to a fully hadronic final state, has been performed using proton-proton collision data collected at $\sqrt{s}$ = 13 TeV by the CMS experiment at the LHC, corresponding to an integrated luminosity of 138 fb$^{-1}$. The 95% confidence level upper limit set on the branching fraction of the 125 GeV Higgs boson to invisible particles, $\mathcal{B}$(H $\to$ inv), is 0.54 (0.39 expected), assuming standard model production cross sections. The results of this analysis are combined with previous $\mathcal{B}$(H $\to$ inv) searches carried out at $\sqrt{s}$ = 7, 8, and 13 TeV in complementary production modes. The combined upper limit at 95% confidence level on $\mathcal{B}$(H $\to$ inv) is 0.15 (0.08 expected).

0 data tables match query

Measurement of the top quark mass using a profile likelihood approach with the lepton+jets final states in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Eur.Phys.J.C 83 (2023) 963, 2023.
Inspire Record 2629755 DOI 10.17182/hepdata.127993

The mass of the top quark is measured in 36.3 fb$^{-1}$ of LHC proton-proton collision data collected with the CMS detector at $\sqrt{s}$ = 13 TeV. The measurement uses a sample of top quark pair candidate events containing one isolated electron or muon and at least four jets in the final state. For each event, the mass is reconstructed from a kinematic fit of the decay products to a top quark pair hypothesis. A profile likelihood method is applied using up to four observables to extract the top quark mass. The top quark mass is measured to be 171.77 $\pm$ 0.37 GeV. This approach significantly improves the precision over previous measurements.

0 data tables match query

Search for a vector-like quark T$'$$\to$ tH via the diphoton decay mode of the Higgs boson in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 09 (2023) 057, 2023.
Inspire Record 2636335 DOI 10.17182/hepdata.134009

A search for the electroweak production of a vector-like quark T$'$, decaying to a top quark and a Higgs boson is presented. The search is based on a sample of proton-proton collision events recorded at the LHC at $\sqrt{s}$ = 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. This is the first T$'$ search that exploits the Higgs boson decay to a pair of photons. For narrow isospin singlet T$'$ states with masses up to 1.1 TeV, the excellent diphoton invariant mass resolution of 1-2% results in an increased sensitivity compared to previous searches based on the same production mechanism. The electroweak production of a T$'$ quark with mass up to 960 GeV is excluded at 95% confidence level, assuming a coupling strength $\kappa_\mathrm{T}$ = 0.25 and a relative decay width $\Gamma/M_{\mathrm{T}'}$ $\lt$ 5%.

0 data tables match query

First measurement of the forward rapidity gap distribution in pPb collisions at $\sqrt{s_\mathrm{NN}}$ = 8.16 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Ambrogi, Federico ; et al.
Phys.Rev.D 108 (2023) 092004, 2023.
Inspire Record 2624308 DOI 10.17182/hepdata.88293

For the first time at LHC energies, the forward rapidity gap spectra from proton-lead collisions for both proton and lead dissociation processes are presented. The analysis is performed over 10.4 units of pseudorapidity at a center-of-mass energy per nucleon pair of $\sqrt{s_\mathrm{NN}}$ = 8.16 TeV, almost 300 times higher than in previous measurements of diffractive production in proton-nucleus collisions. For lead dissociation processes, which correspond to the pomeron-lead event topology, the EPOS-LHC generator predictions are a factor of two below the data, but the model gives a reasonable description of the rapidity gap spectrum shape. For the pomeron-proton topology, the EPOS-LHC, QGSJET II, and HIJING predictions are all at least a factor of five lower than the data. The latter effect might be explained by a significant contribution of ultra-peripheral photoproduction events mimicking the signature of diffractive processes. These data may be of significant help in understanding the high energy limit of quantum chromodynamics and for modeling cosmic ray air showers.

0 data tables match query

Version 2
Measurement of the cross section of top quark-antiquark pair production in association with a W boson in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 07 (2023) 219, 2023.
Inspire Record 2136024 DOI 10.17182/hepdata.127991

The production of a top quark-antiquark pair in association with a W boson ($\mathrm{t\bar{t}}$W) is measured in proton-proton collisions at a center-of-mass energy of 13 TeV. The analyzed data was recorded by the CMS experiment at the CERN LHC and corresponds to an integrated luminosity of 138 fb$^{-1}$. Events with two or three leptons (electrons and muons) and additional jets are selected. In events with two leptons, a multiclass neural network is used to distinguish between the signal and background processes. Events with three leptons are categorized based on the number of jets and of jets originating from b quark hadronization, and the lepton charges. The inclusive $\mathrm{t\bar{t}}$W production cross section in the full phase space is measured to be 868 $\pm$ 40 (stat) $\pm$ 51 (syst) fb. The $\mathrm{t\bar{t}}$W$^+$ and $\mathrm{t\bar{t}}$W$^-$ cross sections are also measured as 553 $\pm$ 30 (stat) $\pm$ 30 (syst) and 343 $\pm$ 26 (stat) $\pm$ 25 (syst) fb, respectively, and the corresponding ratio of the two cross sections is found to be 1.61 $\pm$ 0.15 (stat) $^{+0.07}_{-0.05}$ (syst). The measured cross sections are larger than but consistent with the standard model predictions within two standard deviations, and represent the most precise measurement of these cross sections to date.

0 data tables match query

Measurement of the electroweak production of W$\gamma$ in association with two jets in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.D 108 (2023) 032017, 2023.
Inspire Record 2618186 DOI 10.17182/hepdata.135702

A measurement is presented for the electroweak production of a W boson, a photon ($\gamma$), and two jets (j) in proton-proton collisions. The leptonic decay of the W boson is selected by requiring one identified electron or muon and large missing transverse momentum. The two jets are required to have large invariant dijet mass and large separation in pseudorapidity. The measurement is performed with the data collected by the CMS detector at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. The cross section for the electroweak W$\gamma$jj production is 23.5 $^{+4.9}_{-4.7}$ fb, whereas the total cross section for W$\gamma$jj production is 113 $\pm$ 13 fb. Differential cross sections are also measured with the distributions unfolded to the particle level. All results are in agreement with the standard model expectations. Constraints are placed on anomalous quartic gauge couplings (aQGCs) in terms of dimension-8 effective field theory operators. These are the most stringent limits to date on the aQGCs parameters $f_\mathrm{M,2-5}$$/$$\Lambda^4$ and $f_\mathrm{T,6-7}$$/$$\Lambda^4$.

0 data tables match query

Search for high-mass exclusive $\gamma\gamma\to WW$ and $\gamma\gamma\to ZZ$ production in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS & TOTEM collaborations Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 07 (2023) 229, 2023.
Inspire Record 2605178 DOI 10.17182/hepdata.135991

A search is performed for exclusive high-mass $\gamma\gamma$$\to$ WW and $\gamma\gamma$$\to$ ZZ production in proton-proton collisions using intact forward protons reconstructed in near-beam detectors, with both weak bosons decaying into boosted and merged jets. The analysis is based on a sample of proton-proton collisions collected by the CMS and TOTEM experiments at $\sqrt{s}$ = 13 TeV, corresponding to an integrated luminosity of 100 fb$^{-1}$. No excess above the standard model background prediction is observed, and upper limits are set on the pp $\to$ pWWp and pp $\to$ pZZp cross sections in a fiducial region defined by the diboson invariant mass $m$(VV) $\lt$ 1 TeV (with V = W, Z) and proton fractional momentum loss 0.04 $\lt$$\xi$$\lt$ 0.20. The results are interpreted as new limits on dimension-6 and dimension-8 anomalous quartic gauge couplings.

0 data tables match query

Search for flavor-changing neutral current interactions of the top quark and Higgs boson in final states with two photons in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, A. ; Adam, W. ; Andrejkovic, J.W. ; et al.
Phys.Rev.Lett. 129 (2022) 032001, 2022.
Inspire Record 2111572 DOI 10.17182/hepdata.105999

Proton-proton interactions resulting in final states with two photons are studied in a search for the signature of flavor-changing neutral current interactions of top quarks (t) and Higgs bosons (H). The analysis is based on data collected at a center-of-mass energy of 13 TeV with the CMS detector at the LHC, corresponding to an integrated luminosity of 137 fb$^{-1}$. No significant excess above the background prediction is observed. Upper limits on the branching fractions ($\mathcal{B}$) of the top quark decaying to a Higgs boson and an up (u) or charm quark (c) are derived through a binned fit to the diphoton invariant mass spectrum. The observed (expected) 95% confidence level upper limits are found to be 0.019 (0.031)% for $\mathcal B$(t $\to$ Hu) and 0.073 (0.051)% for $\mathcal{B}$(t $\to$ Hc). These are the strictest upper limits yet determined.

0 data tables match query

Measurements of jet multiplicity and jet transverse momentum in multijet events in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Eur.Phys.J.C 83 (2023) 742, 2023.
Inspire Record 2170533 DOI 10.17182/hepdata.133279

Multijet events at large transverse momentum ($p_\mathrm{T}$) are measured at $\sqrt{s}$ = 13 TeV using data recorded with the CMS detector at the LHC, corresponding to an integrated luminosity of 36.3 fb$^{-1}$. The multiplicity of jets with $p_\mathrm{T}$$>$ 50 GeV that are produced in association with a high-$p_\mathrm{T}$ dijet system is measured in various ranges of the $p_\mathrm{T}$ of the jet with the highest transverse momentum and as a function of the azimuthal angle difference $\Delta\phi_{1,2}$ between the two highest $p_\mathrm{T}$ jets in the dijet system. The differential production cross sections are measured as a function of the transverse momenta of the four highest $p_\mathrm{T}$ jets. The measurements are compared with leading and next-to-leading order matrix element calculations supplemented with simulations of parton shower, hadronization, and multiparton interactions. In addition, the measurements are compared with next-to-leading order matrix element calculations combined with transverse-momentum dependent parton densities and transverse-momentum dependent parton shower.

0 data tables match query

Azimuthal correlations in Z+jets events in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Eur.Phys.J.C 83 (2023) 722, 2023.
Inspire Record 2172990 DOI 10.17182/hepdata.133278

The production of Z bosons associated with jets is measured in pp collisions at $\sqrt{s}$ = 13 TeV with data recorded with the CMS experiment at the LHC corresponding to an integrated luminosity of 36.3 fb$^{-1}$. The multiplicity of jets with transverse momentum $p_\mathrm{T}$$\gt$ 30 GeV is measured for different regions of the Z boson's $p_\mathrm{T}$(Z), from lower than 10 GeV to higher than 100 GeV. The azimuthal correlation $\Delta \phi$ between the Z boson and the leading jet, as well as the correlations between the two leading jets are measured in three regions of $p_\mathrm{T}$(Z). The measurements are compared with several predictions at leading and next-to-leading orders, interfaced with parton showers. Predictions based on transverse-momentum dependent parton distributions and corresponding parton showers give a good description of the measurement in the regions where multiple parton interactions and higher jet multiplicities are not important. The effects of multiple parton interactions are shown to be important to correctly describe the measured spectra in the low $p_\mathrm{T}$(Z) regions.

0 data tables match query