$\rho^0$ Production in $\pi^- p$ Interactions at 100-{GeV}/$c$, 200-{GeV}/$c$ and 360-{GeV}/$c$

Higgins, P.D. ; Shephard, W.D. ; Biswas, N.N. ; et al.
Phys.Rev.D 19 (1979) 65, 1979.
Inspire Record 7275 DOI 10.17182/hepdata.4591

Inclusive and semi-inclusive cross sections for gp0 production in 100, 200, and 360 GeV/c π−p interactions are presented. Differential cross sections for ρ0 production as functions of c.m. rapidity and transverse momentum are compared with the corresponding differential cross sections for pion production. Effects of various methods of estimating background on the values obtained for ρ0 production cross sections are discussed. About 10% of the final-state charged pions appear to come from ρ0 decay. Thus, while ρ0 production and decay is a significant source of final-state pions, other sources must contribute the majority of the produced pions.

0 data tables match query

A Measurement of $J / \psi$ and $\psi^{\prime}$ Production in 300-GeV/c Proton, Antiproton and $\pi^{\pm}$ Nucleon Interactions

The E705 collaboration Antoniazzi, L. ; Arenton, M. ; Cao, Z. ; et al.
Phys.Rev.D 46 (1992) 4828-4835, 1992.
Inspire Record 338055 DOI 10.17182/hepdata.22667

Hadroproduction of the Jψ and ψ′ states has been studied in 300-GeV/c proton, antiproton, and π±Li interactions. Both total and differential cross sections in xF and pT have been measured for the Jψ for the π±, proton, and antiproton interactions. The ratio of ψ′ to Jψ production has been determined for the four types of beam particles.

0 data tables match query

A Measurement of sigma B (W ---> e neutrino) and sigma B (Z0 ---> e+ e-) in anti-p p collisions at s**(1/2) = 1800-GeV

The CDF collaboration Abe, F. ; Amidei, D. ; Apollinari, G. ; et al.
Phys.Rev.D 44 (1991) 29-52, 1991.
Inspire Record 302820 DOI 10.17182/hepdata.42696

An analysis of high-transverse-momentum electrons using data from the Collider Detector at Fermilab (CDF) of p¯p collisions at s=1800 GeV yields values of the production cross section times branching ratio for W and Z0 bosons of σ(p¯p→WX→eνX)=2.19±0.04(stat)±0.21(syst) nb and σ(p¯p→Z0X→e+e−X)=0.209±0.013(stat)±0.017(syst) nb. Detailed descriptions of the CDF electron identification, background, efficiency, and acceptance are included. Theoretical predictions of the cross sections that include a mass for the top quark larger than the W mass, current values of the W and Z0 masses, and higher-order QCD corrections are in good agreement with these measured values.

0 data tables match query

A Measurement of the Neutral Current Electroweak Parameters using the Fermilab Narrow Band Neutrino Beam

Reutens, P.G. ; Merritt, F.S. ; Oreglia, M.J. ; et al.
Z.Phys.C 45 (1990) 539-550, 1990.
Inspire Record 305243 DOI 10.17182/hepdata.15280

We report a measurement of the electroweak parameters sin2θw and ϱ based on the ratios of neutral current to charged current events measured in the Fermilab narrow-band neutrino beam at energies of 30–240 GeV. The data are fully corrected for radiative effects, heavy-quark production, and other effects. The best value for sin2θw obtained, sin2θw=0.239±0.011, is consistent with the most recent values fromW andZ production, as well as from other neutrino experiments.

0 data tables match query

A Measurement of the t-tbar Cross Section in p-pbar Collisions at sqrt(s) = 1.96 TeV using Dilepton Events with a Lepton plus Track Selection

The CDF collaboration Aaltonen, T. ; Adelman, Jahred A. ; Akimoto, T. ; et al.
Phys.Rev.D 79 (2009) 112007, 2009.
Inspire Record 816726 DOI 10.17182/hepdata.63509

This paper reports a measurement of the cross section for the pair production of top quarks in ppbar collisions at sqrt(s) = 1.96 TeV at the Fermilab Tevatron. The data was collected from the CDF II detector in a set of runs with a total integrated luminosity of 1.1 fb^{-1}. The cross section is measured in the dilepton channel, the subset of ttbar events in which both top quarks decay through t -> Wb -> l nu b where l = e, mu, or tau. The lepton pair is reconstructed as one identified electron or muon and one isolated track. The use of an isolated track to identify the second lepton increases the ttbar acceptance, particularly for the case in which one W decays as W -> tau nu. The purity of the sample may be further improved at the cost of a reduction in the number of signal events, by requiring an identified b-jet. We present the results of measurements performed with and without the request of an identified b-jet. The former is the first published CDF result for which a b-jet requirement is added to the dilepton selection. In the CDF data there are 129 pretag lepton + track candidate events, of which 69 are tagged. With the tagging information, the sample is divided into tagged and untagged sub-samples, and a combined cross section is calculated by maximizing a likelihood. The result is sigma_{ttbar} = 9.6 +/- 1.2 (stat.) -0.5 +0.6 (sys.) +/- 0.6 (lum.) pb, assuming a branching ratio of BR(W -> ell nu) = 10.8% and a top mass of m_t = 175 GeV/c^2.

0 data tables match query

A search for bottom-type vector-like quark pair production in dileptonic and fully hadronic final states in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-B2G-20-014, 2024.
Inspire Record 2760468 DOI 10.17182/hepdata.145997

A search is described for the production of a pair of bottom-type vector-like quarks (B VLQs) with mass greater than 1000 GeV. Each B VLQ decays into a b quark and a Higgs boson, a b quark and a Z boson, or a t quark and a W boson. This analysis considers both fully hadronic final states and those containing a charged lepton pair from a Z boson decay. The products of the H $to$ bb boson decay and of the hadronic Z or W boson decays can be resolved as two distinct jets or merged into a single jet, so the final states are classified by the number of reconstructed jets. The analysis uses data corresponding to an integrated luminosity of 138 fb$^{-1}$ collected in proton-proton collisions at $\sqrt{s}$ = 13 TeV with the CMS detector at the LHC from 2016 to 2018. No excess over the expected background is observed. Lower limits are set on the B VLQ mass at 95% confidence level. These depend on the B VLQ branching fractions and are 1570 and 1540 GeV for 100% B $\to$ bH and 100% B $\to$ bZ, respectively. In most cases, the mass limits obtained exceed previous limits by at least 100 GeV.

0 data tables match query

A search for bottom-type, vector-like quark pair production in a fully hadronic final state in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 102 (2020) 112004, 2020.
Inspire Record 1812970 DOI 10.17182/hepdata.99690

A search is described for the production of a pair of bottom-type vector-like quarks (VLQs), each decaying into a b or $\mathrm{\bar{b}}$ quark and either a Higgs or a Z boson, with a mass greater than 1000 GeV. The analysis is based on data from proton-proton collisions at a 13 TeV center-of-mass energy recorded at the CERN LHC, corresponding to a total integrated luminosity of 137 fb$^{-1}$. As the predominant decay modes of the Higgs and Z bosons are to a pair of quarks, the analysis focuses on final states consisting of jets resulting from the six quarks produced in the events. Since the two jets produced in the decay of a highly Lorentz-boosted Higgs or Z boson can merge to form a single jet, nine independent analyses are performed, categorized by the number of observed jets and the reconstructed event mode. No signal in excess of the expected background is observed. Lower limits are set on the VLQ mass at 95% confidence level equal to 1570 GeV in the case where the VLQ decays exclusively to a b quark and a Higgs boson, 1390 GeV for when it decays exclusively to a b quark and a Z boson, and 1450 GeV for when it decays equally in these two modes. These limits represent significant improvements over the previously published VLQ limits.

0 data tables match query

A study of the associated production of photons and b-quark jets in p-pbar collisions at sqrt{s} = 1.96 TeV

The CDF collaboration Aaltonen, T. ; Adelman, J. ; Alvarez Gonzalez, B. ; et al.
Phys.Rev.D 81 (2010) 052006, 2010.
Inspire Record 840503 DOI 10.17182/hepdata.64152

The cross section for photon production in association with at least one jet containing a $b$-quark hadron has been measured in proton antiproton collisions at $\sqrt{s}=1.96$ TeV. The analysis uses a data sample corresponding to an integrated luminosity of 340 pb$^{-1}$ collected with the CDF II detector. Both the differential cross section as a function of photon transverse energy $E_T^{\gamma}$, $d \sigma$($p \overline{p} \to \gamma + \geq 1 b$-jet)/$d E_T^{\gamma}$ and the total cross section $\sigma$($p \overline{p} \to \gamma + \geq 1 b$-jet/ $E_T^{\gamma}> 20$ GeV) are measured. Comparisons to a next-to-leading order prediction of the process are presented.

0 data tables match query

Characteristics of Charm Production by 400-{GeV} Protons

Duffy, M.E. ; Fanourakis, G.K. ; Loveless, R.J. ; et al.
Phys.Rev.Lett. 57 (1986) 1522, 1986.
Inspire Record 229849 DOI 10.17182/hepdata.20206

In a beam-dump experiment at Fermilab the cross section for charm-particle production has been deduced from a measurement of the prompt neutrino flux. The reaction cross section, if we assume only DD¯ and the dependence on atomic weight A0.75, is 57.2 ± 2.9 ± 8.5 μb/nucleon and the dependence on Feynman x and transverse momentum is EDd3σdpD3∝(1−x)3.2e−1.5p⊥ (p⊥ in GeV/c). The data are consistent with as much as 40% diffractive production of ΛcD¯.

0 data tables match query

Charged-Particle Multiplicities in 100-GeV/c anti-p p Interactions

Ansorge, R.E. ; Bust, C.P. ; Carter, J.R. ; et al.
Phys.Lett.B 59 (1975) 299-302, 1975.
Inspire Record 2603 DOI 10.17182/hepdata.27765

Results are presented on the topological cross sections obtained for antiproton-proton interactions from an exposure of the Fermilab 30-inch bubble chamber to a 100 GeV/ c negative beam enriched in p 's. The p p inelastic cross section is found to be σ inel = 34.6 ± 0.4 mb, and the average inelastic charged particle multiplicity to be 〈 n 〉 = 6.74 ± 0.05.

0 data tables match query