eta' production in proton proton scattering close to threshold.

Moskal, P. ; Balewski, J.T. ; Budzanowski, A. ; et al.
Phys.Rev.Lett. 80 (1998) 3202-3205, 1998.
Inspire Record 467809 DOI 10.17182/hepdata.42086

The $pp \to pp \eta^{\prime}$ (958) reaction has been measured at COSY using the internal beam and the COSY-11 facility. The total cross sections at the four different excess energies \mbox{$ Q = ~1.5 ~MeV, ~1.7 ~MeV, ~2.9 ~MeV,$ and $ ~4.1 MeV$} have been evaluated to be \mbox{$ \sigma = 2.5 \pm 0.5~nb$, $~~~ 2.9 \pm 1.1~nb$, $~~~ 12.7 \pm 3.2~nb$, ~ and $~~~ 25.2 \pm 3.6 ~nb $}, respectively. In this region of excess energy the $\eta^{\prime}$ (958) cross sections are much lower compared to those of the $\pi ^0$ and $\eta$ production.

1 data table match query

Only statistical errors are presented in the table.


Total cross section of the reaction p p --> p K+ Lambda close to threshold.

Balewski, J.T. ; Budzanowski, A. ; Dombrowski, H. ; et al.
Phys.Lett.B 420 (1998) 211-216, 1998.
Inspire Record 467810 DOI 10.17182/hepdata.42045

The energy dependence of the total cross section for the pp \to pK^+\Lambda reaction was measured in the threshold region covering the excess energy range up to 7MeV. Existing model calculations describe the slope of the measured cross sections well, but are too low by a factor of two to three in rate. The data were used for a precise determination of the beam momentum of the COSY-synchrotron.

1 data table match query

Only statistical errors are presented in the table.


Near-threshold eta meson production in proton proton collisions.

Smyrski, J. ; Wüstner, P. ; Balewski, J.T. ; et al.
Phys.Lett.B 474 (2000) 182-187, 2000.
Inspire Record 512406 DOI 10.17182/hepdata.28056

The production of eta mesons has been measured in the proton-proton interaction close to the reaction threshold using the COSY-11 internal facility at the cooler synchrotron COSY. Total cross sections were determined for eight different excess energies in the range from 0.5 MeV to 5.4 MeV. The energy dependence of the total cross section is well described by the available phase-space volume weighted by FSI factors for the proton-proton and proton-eta pairs.

1 data table match query

The total cross sections as a function of beam momentum and excess energy with statistical errors. The uncertainty on the beam momentum and excess energy are +- 0.00080 GeV and +- 0.28 MeV respectively.


Dependence of p(pol.) p(pol.) --> p p pi0 near threshold on the spin of the colliding nucleons.

Meyer, H.O. ; Balewski, J.T. ; Dzemidzic, M. ; et al.
Phys.Rev.Lett. 81 (1998) 3096-3099, 1998.
Inspire Record 472992 DOI 10.17182/hepdata.39971

A polarized internal atomic hydrogen target and a stored, polarized beam are used to measure the spin-dependent total cross section Delta_sigma_T/sigma_tot, as well as the polar integrals of the spin correlation coefficient combination A_xx-A_yy, and the analyzing power A_y for pp-> pp pi0 at four bombarding energies between 325 and 400 MeV. This experiment is made possible by the use of a cooled beam in a storage ring. The polarization observables are used to study the contribution from individual partial waves.

1 data table match query

SIG(C=DEL_T) defined as the cross section with the spins of the colliding protons antiparallel, minus the cross section with spins parallel, using transversely polarized beam and target.


Measurement of partial-wave contributions in p p --> p p pi0.

Meyer, H.O. ; Balewski, J.T. ; Doskow, J. ; et al.
Phys.Rev.Lett. 83 (1999) 5439-5442, 1999.
Inspire Record 504512 DOI 10.17182/hepdata.31354

We report a measurement of the spin-dependent total cross section ratios delta_sigma_T/sigma_tot and delta_sigma_L/sigma_tot of the pp --> pp pi^0 reaction between 325 MeV and 400 MeV. The experiment was carried out with a polarized internal target in a storage ring. Non-vertical beam polarization was obtained by the use of solenoidal spin rotators. Near threshold, the knowledge of both spin-dependent total cross sections is sufficient to deduce the strength of certain participating partial waves, free of any model.

2 data tables match query

SIG(C=T1-1) and SIG(C=T11) means opposite and parallel transverse beam and target polarizations. The same is for longitudunal (L) polarizations. SIG(C=TOT)is unpolarized total cross section.

SIG(C=L1-1) and SIG(L=11) means opposite and parallel longitudinal beam andtarget polarizations. SIG(C=TOT) is unpolarized total cross section.


Energy dependence of the near-threshold total cross-section for the p p --> p p eta' reaction.

Moskal, P. ; Adam, H.H. ; Balewski, J.T. ; et al.
Phys.Lett.B 474 (2000) 416-422, 2000.
Inspire Record 522744 DOI 10.17182/hepdata.28036

Total cross sections for the pp --> pp eta' reaction have been measured in the excess energy range from Q = 1.53 MeV to Q = 23.64 MeV. The experiment has been performed at the internal installation COSY-11 using a stochastically cooled proton beam of the COoler SYnchrotron COSY and a hydrogen cluster target. The determined energy dependence of the total cross section weakens the hypothesis of the S-wave repulsive interaction between the eta' meson and the proton. New data agree well with predictions based on the phase-space distribution modified by the proton-proton final-state-interaction (FSI) only.

1 data table match query

Total cross sections w.r.t the excess energy in the CM system. Statistical errors only are given. As well as the 15 PCT overall systematic uncertainty there is an uncertainty on the energy of 0.44 MeV.


Comparison of Lambda and Sigma0 threshold production in proton proton collisions.

Sewerin, S. ; Schepers, G. ; Balewski, J.T. ; et al.
Phys.Rev.Lett. 83 (1999) 682-685, 1999.
Inspire Record 478929 DOI 10.17182/hepdata.42059

Threshold measurements of the associated strangeness production reactions pp --> p K(+) Lambda and pp --> p K(+) Sigma(0) are presented. Although slight differences in the shapes of the excitation functions are observed, the most remarkable feature of the data is that at the same excess energy the total cross section for the Sigma(0) production appears to be about a factor of 28 smaller than the one for the Lambda particle. It is concluded that strong Sigma(0)-p final state interactions, and in particular the Sigma-N --> Lambda-p conversion reaction, are the likely cause of the depletion for the yield in the Sigma signal. This hypothesis is in line with other experimental evidence in the literature.

1 data table match query

The given errors are statistical only. The cross section presented as a function of the nominal excess energy.


Open charm yields in d + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 94 (2005) 062301, 2005.
Inspire Record 653868 DOI 10.17182/hepdata.43117

Mid-rapidity open charm spectra from direct reconstruction of $D^{0}$($\bar{D^0}$)$\to K^{\mp}\pi^{\pm}$ in d+Au collisions and indirect electron/positron measurements via charm semileptonic decays in p+p and d+Au collisions at \srt = 200 GeV are reported. The $D^{0}$($\bar{D^0}$) spectrum covers a transverse momentum ($p_T$) range of 0.1 $<p_T<$ 3 \GeVc whereas the electron spectra cover a range of 1 $<p_T<$ 4 GeV/$c$. The electron spectra show approximate binary collision scaling between p+p and d+Au collisions. From these two independent analyses, the differential cross section per nucleon-nucleon binary interaction at mid-rapidity for open charm production from d+Au collisions at RHIC is $d\sigma^{NN}_{c\bar{c}}/dy$=0.30$\pm$0.04 (stat.)$\pm$0.09(syst.) mb. The results are compared to theoretical calculations. Implications for charmoniumm results in A+A collisions are discussed.

8 data tables match query

Inclusive electrons yield versus transverse momentum in D+AU collisions Data points at PT = 2.2, 2.7 and 3.5 GeV/c was obtained using only the TPC (Time Projection Chamber) and cover a pseudo-rapidity range of -1<eta<1, while other points were obtained using both a prototypeTime-of-Flight System and the TPC and cover a pseudo-rapidity range of -1<eta<0.

Inclusive electrons yield versus transverse momentum in P+P collisions.

D0 yield versus transverse momentum in D+AU collisions.

More…

Anti-baryon production in sulphur nucleus collisions at 200-GeV per nucleon

The NA35 collaboration Alber, T. ; Appelshäuser, H. ; Bächler, J. ; et al.
Phys.Lett.B 366 (1996) 56-62, 1996.
Inspire Record 427399 DOI 10.17182/hepdata.28428

Antiproton production near midrapidity has been studied in central collisions of 32 S with sulphur, silver and gold nuclei at 200 GeV per nucleon. The measured transverse mass distributions can be described by an exponential with inverse slope parameters of about 200 MeV, similar to those obtained from Λ spectra. The rapidity density increases weakly with the target mass, ranging from 0.4 to 0.7. The ratio Λ p near midrapidity is approximately 1.4 on average, significantly larger than the corresponding ratio observed in proton-proton and proton-nucleus collisions.

0 data tables match query

K*(892)0 production in relativistic heavy ion collisions at S(NN)**(1/2) = 130-GeV.

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Rev.C 66 (2002) 061901, 2002.
Inspire Record 587235 DOI 10.17182/hepdata.54898

We report the first observation of $K^{\star}(892)^{0}\to\pi K$ in relativistic heavy ion collisions. The transverse momentum spectrum of $(K^{\star0}+\bar{K}^{\star0})/2$ from central Au+Au collisions at $\sqrt{s_{_{NN}}}=130$ GeV is presented. The ratios of the $K^{\star0}$ yield derived from these data to the yields of negative hadrons, charged kaons, and $\phi$ mesons have been measured in central and minimum bias collisions and compared with model predictions and comparable $e^{+}e^{-}$, $pp$, and $\bar{p}p$ results. The data indicate no dramatic reduction of $K^{\star0}$ production in relativistic heavy ion collisions despite expected losses due to rescattering effects.

4 data tables match query

Transverse mass spectrum of K*0 with YRAP = -0.5 to 0.5 for the 14 PCT most central interactions. Numerical values requested from the authors.

K*0 to negative hadron ratio using hadron data from Adler et al PRL 87,112303(2001).

K*0 to kaon ratio using STAR kaon data.

More…