Nuclear modification factors for hadrons at forward and backward rapidities in deuteron gold collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 94 (2005) 082302, 2005.
Inspire Record 665543 DOI 10.17182/hepdata.141362

We report on charged hadron production in deuteron-gold reactions at sqrt(s_NN) = 200 GeV. Our measurements in the deuteron-direction cover 1.4 < eta < 2.2, referred to as forward rapidity, and in the gold-direction -2.0 < eta < -1.4, referred to as backward rapidity, and a transverse momentum range p_T = 0.5-4.0 GeV/c. We compare the relative yields for different deuteron-gold collision centrality classes. We observe a suppression relative to binary collision scaling at forward rapidity, sensitive to low momentum fraction (x) partons in the gold nucleus, and an enhancement at backward rapidity, sensitive to high momentum fraction partons in the gold nucleus.

4 data tables match query

$R_{cp}$ as a function of $p_T$ for Punch-Through Hadrons at forward rapidity and backward rapidity for different centrality classes. Systematic uncertainties which are point-to-point uncorrelated (sys-uncorr) and correlated (sys-corr) are shown.

$R_{cp}$ as a function of $p_T$ for Hadron Decay Muons at forward rapidity and backward rapidity for different centrality classes. Systematic uncertainties which are point-to-point uncorrelated (sys-uncorr) and correlated (sys-corr) are shown.

$R_{cp}$ as a function of $\eta$ for 1.5 < $p_T$ < 4.0 GeV/$c$ for different centrality classes. Systematic uncertainties which are point-to-point uncorrelated (sys-uncorr) and correlated (sys-corr) are shown.

More…

Spectra of identified high-$p_{T}$ $\pi^\pm$ and $p(\bar{p})$ in Cu$+$Cu collisions at $\sqrt{s_{NN}}=200$ GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 81 (2010) 054907, 2010.
Inspire Record 837075 DOI 10.17182/hepdata.98965

We report new results on identified (anti)proton and charged pion spectra at large transverse momenta (3<$p_{T}$<10 GeV/c) from Cu+Cu collisions at $\sqrt{s_{NN}}$=200 GeV using the STAR detector at the Relativistic Heavy Ion Collider (RHIC). This study explores the system size dependence of two novel features observed at RHIC with heavy ions: the hadron suppression at high-$p_{T}$ and the anomalous baryon to meson enhancement at intermediate transverse momenta. Both phenomena could be attributed to the creation of a new form of QCD matter. The results presented here bridge the system size gap between the available pp and Au+Au data, and allow the detailed exploration for the on-set of the novel features. Comparative analysis of all available 200 GeV data indicates that the system size is a major factor determining both the magnitude of the hadron spectra suppression at large transverse momenta and the relative baryon to meson enhancement.

7 data tables match query

Anti-particle to particle ratios, as a function of transverse momentum for pions (a) and protons (b). Data for the four centrality classes show little centrality dependence. Errors are statistical only.

Anti-particle to particle ratios, as a function of transverse momentum for pions (a) and protons (b). Data for the four centrality classes show little centrality dependence. Errors are statistical only.

(Color online) (a) Nuclear modification factor, RAA, for charged pions ($\pi^{+}+\pi^{−}$) in Cu+Cu (filled symbols) and Au+Au (open symbols) collisions at $\sqrt{s_{NN}}$=200 GeV. Error bands are shown for most peripheral and most central Cu+Cu data to represent evolution of the systematic uncertainties for this dataset. Error boxes at $R_{AA}$=1 represent Cu+Cu scale uncertainties due to the number of collisions and from $pp$ spectra normalization.

More…

Center of mass energy and system-size dependence of photon production at forward rapidity at RHIC

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Nucl.Phys.A 832 (2010) 134-147, 2010.
Inspire Record 822997 DOI 10.17182/hepdata.101347

We present the multiplicity and pseudorapidity distributions of photons produced in Au+Au and Cu+Cu collisions at \sqrt{s_NN} = 62.4 and 200 GeV. The photons are measured in the region -3.7 < \eta < -2.3 using the photon multiplicity detector in the STAR experiment at RHIC. The number of photons produced per average number of participating nucleon pairs increases with the beam energy and is independent of the collision centrality. For collisions with similar average numbers of participating nucleons the photon multiplicities are observed to be similar for Au+Au and Cu+Cu collisions at a given beam energy. The ratios of the number of charged particles to photons in the measured pseudorapidity range are found to be 1.4 +/- 0.1 and 1.2 +/- 0.1 for \sqrt{s_NN} = 62.4 GeV and 200 GeV, respectively. The energy dependence of this ratio could reflect varying contributions from baryons to charged particles, while mesons are the dominant contributors to photon production in the given kinematic region. The photon pseudorapidity distributions normalized by average number of participating nucleon pairs, when plotted as a function of \eta - ybeam, are found to follow a longitudinal scaling independent of centrality and colliding ion species at both beam energies.

14 data tables match query

Fig. 1. (Color online.) Top panel: Photon reconstruction efficiency $\left(\epsilon_{\gamma}\right)$ (solid symbols) and purity of photon sample $\left(f_{\mathrm{p}}\right)$ (open symbols) for PMD as a function of pseudorapidity $(\eta)$ for minimum bias $\mathrm{Au}+\mathrm{Au}$ and $\mathrm{Cu}+\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=$ $200 \mathrm{GeV}$. Bottom panel: Comparison between estimated $\epsilon_{\gamma}$ and $f_{\mathrm{p}}$ for PMD as a function of $\eta$ for minimum bias $\mathrm{Au}+\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=62.4 \mathrm{GeV}$ using HIJING and AMPT models. The error bars on the AMPT data are statistical and those for HIJING are within the symbol size. NOTE: For points with invisible error bars, the point size was considered as an absolute upper limit for the uncertainty.

Fig. 1. (Color online.) Top panel: Photon reconstruction efficiency $\left(\epsilon_{\gamma}\right)$ (solid symbols) and purity of photon sample $\left(f_{\mathrm{p}}\right)$ (open symbols) for PMD as a function of pseudorapidity $(\eta)$ for minimum bias $\mathrm{Au}+\mathrm{Au}$ and $\mathrm{Cu}+\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=$ $200 \mathrm{GeV}$. Bottom panel: Comparison between estimated $\epsilon_{\gamma}$ and $f_{\mathrm{p}}$ for PMD as a function of $\eta$ for minimum bias $\mathrm{Au}+\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=62.4 \mathrm{GeV}$ using HIJING and AMPT models. The error bars on the AMPT data are statistical and those for HIJING are within the symbol size. NOTE: For points with invisible error bars, the point size was considered as an absolute upper limit for the uncertainty.

Fig. 2. (Color online.) Event-by-event photon multiplicity distributions (solid circles) for $\mathrm{Au}+\mathrm{Au}$ and $\mathrm{Cu}+\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=62.4$ and $200 \mathrm{GeV} .$ The distributions for top $0-5 \%$ central $\mathrm{Au}+$ Au collisions and top $0-10 \%$ central $\mathrm{Cu}+\mathrm{Cu}$ collisions are also shown (open circles). The photon multiplicity distributions for central collisions are observed to be Gaussian (solid line). Only statistical errors are shown. NOTE: For points with invisible error bars, the point size was considered as an absolute upper limit for the uncertainty.

More…

Kshort and Lambda production in pp interactions at sqrt(s) = 0.9 and 7 TeV measured with the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 85 (2012) 012001, 2012.
Inspire Record 944826 DOI 10.17182/hepdata.58341

The production of Kshort and Lambda hadrons is studied in inelastic pp collisions at sqrt(s) = 0.9 and 7 TeV collected with the ATLAS detector at the LHC using a minimum-bias trigger. The observed distributions of transverse momentum, rapidity, and multiplicity are corrected to hadron level in a model-independent way within well defined phase-space regions. The distribution of the production ratio of Lambdabar to Lambda baryons is also measured. The results are compared with various Monte Carlo simulation models. Although most of these models agree with data to within 15% in the Kshort distributions, substantial disagreements with data are found in the Lambda distributions of transverse momentum.

16 data tables match query

The corrected transverse momentum distribution of KS mesons at 7000 GeV.

The corrected rapidity distribution of KS mesons at 7000 GeV.

The corrected multiplicity distribution of KS mesons at 7000 GeV.

More…

Forward-backward correlations and charged-particle azimuthal distributions in pp interactions using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 07 (2012) 019, 2012.
Inspire Record 1093734 DOI 10.17182/hepdata.68040

Using inelastic proton-proton interactions at sqrt(s) = 900 GeV and 7 TeV, recorded by the ATLAS detector at the LHC, measurements have been made of the correlations between forward and backward charged-particle multiplicities and, for the first time, between forward and backward charged-particle summed transverse momentum. In addition, jet-like structure in the events is studied by means of azimuthal distributions of charged particles relative to the charged particle with highest transverse momentum in a selected kinematic region of the event. The results are compared with predictions from tunes of the PYTHIA and HERWIG++ Monte Carlo generators, which in most cases are found to provide a reasonable description of the data.

27 data tables match query

$\sqrt{s} = 900$ GeV, $p_T > 500 $ MeV, $|\eta|<1$.

$\sqrt{s} = 7$ TeV, $p_T > 500 $ MeV, $|\eta|<1$.

$\sqrt{s} = 900$ GeV, $p_T > 500 $ MeV, $|\eta|<2$.

More…

Measurement of inclusive two-particle angular correlations in pp collisions with the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 05 (2012) 157, 2012.
Inspire Record 1094061 DOI 10.17182/hepdata.59818

We present a measurement of two-particle angular correlations in proton-proton collisions at sqrt(s) = 900 GeV and 7 TeV. The collision events were collected during 2009 and 2010 with the ATLAS detector at the Large Hadron Collider using a single-arm minimum bias trigger. Correlations are measured for charged particles produced in the kinematic range of transverse momentum pT > 100 MeV and pseudorapidity |eta| < 2.5. A complex structure in pseudorapidity and azimuth is observed at both collision energies. Results are compared to Pythia 8 and Herwig++ as well as to the AMBT2B, DW and Perugia 2011 tunes of Pythia 6. The data are not satisfactorily described by any of these models.

5 data tables match query

Corrected two particle RCORR distribution as a function of Delta(ETARAP) obtained by integrating the foreground and background distributions over Delta(PHI) between 0 and PI.

Corrected two particle RCORR distribution as a function of Delta(ETARAP) obtained by integrating the foreground and background distributions over Delta(PHI) between 0 and PI/2.

Corrected two particle RCORR distribution as a function of Delta(ETARAP) obtained by integrating the foreground and background distributions over Delta(PHI) between PI/2 and PI.

More…

Measurement of the azimuthal ordering of charged hadrons with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 86 (2012) 052005, 2012.
Inspire Record 1091481 DOI 10.17182/hepdata.58477

This paper presents a measurement of the ordering of charged hadrons in the azimuthal angle relative to the beam axis in high-energy proton-proton collisions at the Large Hadron Collider (LHC). A spectral analysis of correlations between longitudinal and transverse components of the momentum of the charged hadrons, driven by the search for phenomena related to the structure of the QCD field, is performed. Data were recorded with the ATLAS detector at centre-of-mass energies of sqrt(s) = 900 GeV and sqrt(s) = 7 TeV. The correlations measured in a phase space region dominated by low-pT particles are not well described by conventional models of hadron production. The measured spectra show features consistent with the fragmentation of a QCD string represented by a helix-like ordered gluon chain.

4 data tables match query

The corrected data for the power spectra S_E for the three different data samples at a centre-of-mass energy of 7 TeV.

The corrected data for the power spectra S_ETA for the three different data samples at a centre-of-mass energy of 7 TeV.

The corrected data for the power spectra S_E for the three different data samples at a centre-of-mass energy of 900 GeV.

More…

Centrality dependence of direct photon production in s(NN)**(1/2) = 200-GeV Au + Au collisions.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 94 (2005) 232301, 2005.
Inspire Record 678021 DOI 10.17182/hepdata.141029

The first measurement of direct photons in Au+Au collisions at sqrt(s_NN) = 200 GeV is presented. The direct photon signal is extracted as a function of the Au+Au collision centrality and compared to NLO pQCD calculations. The direct photon yield is shown to scale with the number of nucleon-nucleon collisions for all centralities.

5 data tables match query

Double ratio of measured $(\gamma/\pi^0)_{Measured}$ invariant yield ratio to the background decay $(\gamma/\pi^0)_{Background}$ ratio as a function of $p_T$ for minimum bias and for five centralities of Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. The bin range is not an uncertainty in the x-axis because the actual uncertainty by having the finite bin width is corrected for by the bin-shift correction. These bins were constructed using the corrected finite values as centers.

Double ratio of measured $(\gamma/\pi^0)_{Measured}$ invariant yield ratio to the background decay $(\gamma/\pi^0)_{Background}$ ratio as a function of $p_T$ for minimum bias and for five centralities of Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. The bin range is not an uncertainty in the x-axis because the actual uncertainty by having the finite bin width is corrected for by the bin-shift correction. These bins were constructed using the corrected finite values as centers.

Direct $\gamma$ invariant yields as a function of transverse momentum for 9 centrality selections and minimum bias Au+AU collisions at $\sqrt{s_{NN}}$ = 200 GeV. Data with no errors represents 90% confidence level upper limit. The bin range is not an uncertainty in the x-axis because the actual uncertainty by having the finite bin width is corrected for by the bin-shift correction. These bins were constructed using the corrected finite values as centers.

More…

Measurement of identified pi0 and inclusive photon v(2) and implication to the direct photon production in s(NN)**(1/2) = 200-GeV Au + Au collisions.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 96 (2006) 032302, 2006.
Inspire Record 690050 DOI 10.17182/hepdata.142374

The azimuthal distribution of identified pi^0 and inclusive photons has been measured in sqrt{s_{NN}} = 200 GeV Au+Au collisions with the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC). The second harmonic parameter (v_2) was measured to describe the observed anisotropy of the azimuthal distribution. The measured inclusive photon v_2 is consistent with the value expected for the photons from hadron decay and is also consistent with the lack of direct photon signal over the measured p_T range 1-6 GeV/c. An attempt is made to extract v_2 of direct photons.

5 data tables match query

The measured $v_2$ of $\pi^0$ ($v_2^{\pi^0}$) for 4 centrality selections.

The measured $v_2$ of inclusive photon ($v_2^{inclusive \gamma}$) for 4 centrality selections.

The expected photon $v_2$ from hadronic decay $v_2^{(b.g.)}$ and the subtracted $v_2$ quantity $R v_2^{(inclusive \gamma)}$ - $v_2^{(b.g.)}$.

More…

Saturation of azimuthal anisotropy in Au + Au collisions at s(NN)**(1/2) = 62-GeV - 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 94 (2005) 232302, 2005.
Inspire Record 664944 DOI 10.17182/hepdata.141741

New measurements are presented for charged hadron azimuthal correlations at mid-rapidity in Au+Au collisions at sqrt(s_NN) = 62.4 and 200 GeV. They are compared to earlier measurements obtained at sqrt(s_NN) = 130 GeV and in Pb+Pb collisions at sqrt(s_NN) = 17.2 GeV. Sizeable anisotropies are observed with centrality and transverse momentum (p_T) dependence characteristic of elliptic flow (v_2). For a broad range of centralities, the observed magnitudes and trends of the differential anisotropy, v_2(p_T), change very little over the collision energy range sqrt(s_NN) = 62-200 GeV, indicating saturation of the excitation function for v_2 at these energies. Such a saturation may be indicative of the dominance of a very soft equation of state for sqrt(s_NN) = 62-200 GeV.

10 data tables match query

Assorted-$p_T$ correlation functions (0.65 < $p_{T,ref}$ < 2.5 GeV/$c$) for charged hadrons of 0.5 < $p_T$ < 0.7 GeV/$c$ and 1.0 < $p_T$ < 1.5 obtained in Au+Au collisions at $\sqrt{S_{NN}}$ = 62.4 GeV.

Differential anisotropy $v_2$($p_T$) for charged hadrons in Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV obtained via cumulants method

Differential anisotropy $v_2$($p_T$) for charged hadrons in Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV obtained via correlation function method

More…