Prompt and non-prompt J/psi production in pp collisions at sqrt(s) = 7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 71 (2011) 1575, 2011.
Inspire Record 878118 DOI 10.17182/hepdata.57532

The production of J/psi mesons is studied in pp collisions at sqrt(s)=7 TeV with the CMS experiment at the LHC. The measurement is based on a dimuon sample corresponding to an integrated luminosity of 314 inverse nanobarns. The J/psi differential cross section is determined, as a function of the J/psi transverse momentum, in three rapidity ranges. A fit to the decay length distribution is used to separate the prompt from the non-prompt (b hadron to J/psi) component. Integrated over J/psi transverse momentum from 6.5 to 30 GeV/c and over rapidity in the range |y| < 2.4, the measured cross sections, times the dimuon decay branching fraction, are 70.9 \pm 2.1 (stat.) \pm 3.0 (syst.) \pm 7.8(luminosity) nb for prompt J/psi mesons assuming unpolarized production and 26.0 \pm 1.4 (stat.) \pm 1.6 (syst.) \pm 2.9 (luminosity) nb for J/psi mesons from b-hadron decays.

13 data tables match query

Total cross section within the kinematic limits for prompt and non-prompt J/PSI production times branching ratio into MU+ MU-, assuming zero polarizartion. The second systematic error is the luminosity uncertainty.

Differential inclusive cross J/PSI section for the |rapidity| range 0 to 1.2 for each prompt J/PSI polarization scenario considered.

Differential inclusive cross J/PSI section for the |rapidity| range 1.2 to 1.6 for each prompt J/PSI polarization scenario considered.

More…

Measurement of the t-tbar production cross section in the e-mu channel in proton-proton collisions at sqrt(s) = 7 and 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 08 (2016) 029, 2016.
Inspire Record 1426692 DOI 10.17182/hepdata.74208

The inclusive cross section for top quark pair production is measured in proton-proton collisions at sqrt(s) = 7 and 8 TeV, corresponding to 5.0 and 19.7 invers-femtobarns, respectively, with the CMS experiment at the LHC. The cross sections are measured in the electron-muon channel using a binned likelihood fit to multi-differential final state distributions related to identified b quark jets and other jets in the event. The measured cross section values are 173.6 +/- 2.1 (stat) +4.5-4.0 (syst) +/- 3.8 (lumi) pb at sqrt(s) = 7 TeV, and 244.9 +/- 1.4 (stat) +6.3-5.5 (syst) +/- 6.4 (lumi) pb at sqrt(s) = 8 TeV, in good agreement with QCD calculations at next-to-next-to-leading-order accuracy. The ratio of the cross sections measured at 7 and 8 TeV is determined, as well as cross sections in the fiducial regions defined by the acceptance requirements on the two charged leptons in the final state. The cross section results are used to determine the top quark pole mass via the dependence of the theoretically predicted cross section on the mass, giving a best result of 173.8 +1.7-1.8 GeV. The data at sqrt(s) = 8 TeV are also used to set limits, for two neutralino mass values, on the pair production of supersymmetric top squarks with masses close to the top quark mass.

3 data tables match query

Measurement of the visible $t\bar{t}$ production cross-section in $pp$ collisions at $\sqrt{s} = 7$ and $8$ TeV. The visible cross section is defined for events containing an oppositely charged $\rm{e}\mu$ pair from the decay chain ${\rm t} \rightarrow {\rm W b} \rightarrow {\ell} \nu {\rm b}$ (including ${\rm W} \rightarrow \tau \nu \rightarrow {\ell} \nu \nu \nu$) and with both leptons satisfying $p_T > 20\, \rm{GeV}$ and $|{\eta}| < 2.4$.

Measurement of the inclusive $t\bar{t}$ production cross-section in $pp$ collisions at $\sqrt{s} = 7$ and $8$ TeV.

Top quark pole mass at NNLO+NNLL extracted by comparing the measured $t\bar{t}$ production cross sections at 7 and 8 TeV with predictions employing different PDF sets. The uncertainties of the CT14 PDF set are scaled to 68% confidence level.


Measurement of the $\Upsilon(1S), \Upsilon(2S)$, and $\Upsilon(3S)$ Cross Sections in $pp$ Collisions at $\sqrt{s}$ = 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Lett.B 727 (2013) 101-125, 2013.
Inspire Record 1225274 DOI 10.17182/hepdata.60518

The $\Upsilon$(1S), $\Upsilon$(2S), and $\Upsilon$(3S) production cross sections are measured using a data sample corresponding to an integrated luminosity of 35.8 $\pm$ 1.4 inverse picobarns of proton-proton collisions at $\sqrt{s}$ = 7 TeV, collected with the CMS detector at the LHC. The Upsilon resonances are identified through their decays to dimuons. Integrated over the $\Upsilon$ transverse momentum range $p_{t}^{\Upsilon} \lt$ 50GeV and rapidity range |$y^\Upsilon$| $\lt$ 2.4, and assuming unpolarized Upsilon production, the products of the Upsilon production cross sections and dimuon branching fractions are \begin{equation*}\sigma(pp \to \Upsilon(1S) X) . B(\Upsilon(1S) \to \mu^+ \mu^-) = (8.55 \pm 0.05^{+0.56}_{-0.50} \pm 0.34) nb,\end{equation*} \begin{equation*}\sigma(pp \to \Upsilon(2S) X) . B(\Upsilon(2S) \to \mu^+ \mu^-) = (2.21 \pm 0.03^{+0.16}_{-0.14} \pm 0.09) nb,\end{equation*} \begin{equation*}\sigma(pp \to \Upsilon(3S) X) . B(\Upsilon(3S) \to \mu^+ \mu^-) = (1.11 \pm 0.02^{+0.10}_{-0.08} \pm 0.04) nb, \end{equation*} where the first uncertainty is statistical, the second is systematic, and the third is from the uncertainty in the integrated luminosity. The differential cross sections in bins of transverse momentum and rapidity, and the cross section ratios are presented. Cross section measurements performed within a restricted muon kinematic range and not corrected for acceptance are also provided. These latter measurements are independent of Upsilon polarization assumptions. The results are compared to theoretical predictions and previous measurements.

31 data tables match query

The fiducial and acceptance-corrected cross sections for PT<50 GeV/c and |rapidity|<2.4.

The fiducial and acceptance corrected UPSI(1S) production cross sections (times di-muon branching ratio) as a function of PT for the |rapidity| range < 2.4. Note these are integrated cross sections and the acceptance-corrected cross sections assume the UPSI(1S) are unpolarized with the variations due to the 4 extreme polarization scenarios shown in the last 4 columns. The fiducial cross sections do not need to make any assumptions on the polarizations scenarios. The luminosity uncertainty of 4% is not included in the systematic errors.

The fiducial and acceptance corrected UPSI(2S) production cross sections (times di-muon branching ratio) as a function of PT for the |rapidity| range < 2.4. Note these are integrated cross sections and the acceptance-corrected cross sections assume the UPSI(2S) are unpolarized with the variations due to the 4 extreme polarization scenarios shown in the last 4 columns. The fiducial cross sections do not need to make any assumptions on the polarizations scenarios. The luminosity uncertainty of 4% is not included in the systematic errors.

More…

Observation of Higgs boson decay to bottom quarks

The CMS collaboration Sirunyan, A. M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 121 (2018) 121801, 2018.
Inspire Record 1691854 DOI 10.17182/hepdata.86132

The observation of the standard model (SM) Higgs boson decay to a pair of bottom quarks is presented. The main contribution to this result is from processes in which Higgs bosons are produced in association with a W or Z boson (VH), and are searched for in final states including 0, 1, or 2 charged leptons and two identified bottom quark jets. The results from the measurement of these processes in a data sample recorded by the CMS experiment in 2017, comprising 41.3 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} =$ 13 TeV, are described. When combined with previous VH measurements using data collected at $\sqrt{s}=$ 7, 8, and 13 TeV, an excess of events is observed at $m_\mathrm{H} =$ 125.09 GeV with a significance of 4.8 standard deviations, where the expectation for the SM Higgs boson is 4.9. The corresponding measured signal strength is 1.01 $\pm$ 0.22. The combination of this result with searches by the CMS experiment for H $\to\mathrm{b\overline{b}}$ in other production processes yields an observed (expected) significance of 5.6 (5.5) standard deviations and a signal strength of 1.04 $\pm$ 0.20.

2 data tables match query

Expected and observed significances, in number of standard deviations, and observed signal strengths for the VH production process with H-->b bbar. Results are shown separately for 2017 data, combined Run 2 (2016 and 2017 data), and for the combination of the Run 1 and Run 2 data. For the 2017 analysis, results are shown separately for the individual mu value for each channel from a combined simultaneous fit to all channels. All results are obtained for mH=125.09 GeV. Data are from Table 2 and 2016 added from Figure 1b.

Best-fit value of the H-->b bbar signal strength with its 1 sigma systematic (red) and total (blue) uncertainties for the five individual production modes considered, as well as the overall combined result. The vertical dashed line indicates the standard model expectation. All results are extracted from a single fit combining all input analyses, with mH = 125.09 GeV. Data from Figure 3.


Version 4
Measurements of production cross sections of the Higgs boson in the four-lepton final state in proton-proton collisions at $\sqrt{s} = $ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 81 (2021) 488, 2021.
Inspire Record 1850544 DOI 10.17182/hepdata.102525

Production cross sections of the Higgs boson are measured in the H $\to$ ZZ $\to$ $4\ell$ ($\ell$ $=$ e, $\mu$) decay channel. A data sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS detector at the LHC and corresponding to an integrated luminosity of 137 fb$^{-1}$ is used. The signal strength modifier $\mu$, defined as the ratio of the Higgs boson production rate in the $4\ell$ channel to the standard model (SM) expectation, is measured to be $\mu$ $=$ 0.94 $\pm$ 0.07 (stat) ${}^{+0.09}_{-0.08}$ (syst) at a fixed value of $m_H$ = 125.38 GeV. The signal strength modifiers for the individual Higgs boson production modes are also reported. The inclusive fiducial cross section for the H $\to$ $4\ell$ process is measured to be 2.84 $^{+0.23}_{-0.22}$ (stat) ${}^{+0.26}_{-0.21}$ (syst) fb, which is compatible with the SM prediction of 2.84 $\pm$ 0.15 fb for the same fiducial region. Differential cross sections as a function of the transverse momentum and rapidity of the Higgs boson, the number of associated jets, and the transverse momentum of the leading associated jet are measured. A new set of cross section measurements in mutually exclusive categories targeted to identify production mechanisms and kinematical features of the events is presented. The results are in agreement with the SM predictions.

52 data tables match query

Integrated Fiducial Higgs cross section. The first uncertainty is the combined statistical uncertainty, the second is the combined systematic uncertainty. As described in the publication, the fiducial volume for 7 and 8 TeV is different than for 13 TeV.

Integrated Fiducial Higgs cross section. The first uncertainty is the combined statistical uncertainty, the second is the combined systematic uncertainty. As described in the publication, the fiducial volume for 7 and 8 TeV is different than for 13 TeV.

Integrated Fiducial Higgs cross section. The first uncertainty is the combined statistical uncertainty, the second is the combined systematic uncertainty. As described in the publication, the fiducial volume for 7 and 8 TeV is different than for 13 TeV.

More…

Measurement of the forward charged particle pseudorapidity density in pp collisions at sqrt{s} = 7 TeV with the TOTEM experiment

The TOTEM collaboration Antchev, G ; Atanassov, I. ; Avati, V. ; et al.
EPL 98 (2012) 31002, 2012.
Inspire Record 1115294 DOI 10.17182/hepdata.59403

The TOTEM experiment has measured the charged particle pseudorapidity density dN_{ch}/deta in pp collisions at sqrt{s} = 7 TeV for 5.3<|eta|<6.4 in events with at least one charged particle with transverse momentum above 40 MeV/c in this pseudorapidity range. This extends the analogous measurement performed by the other LHC experiments to the previously unexplored forward eta region. The measurement refers to more than 99% of non-diffractive processes and to single and double diffractive processes with diffractive masses above ~3.4 GeV/c^2, corresponding to about 95% of the total inelastic cross-section. The dN_{ch}/deta has been found to decrease with |eta|, from 3.84 pm 0.01(stat) pm 0.37(syst) at |eta| = 5.375 to 2.38 pm 0.01(stat) pm 0.21(syst) at |eta| = 6.375. Several MC generators have been compared to data; none of them has been found to fully describe the measurement.

1 data table match query

Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 7 TeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >40 MeV and 5.3< absolute(pseudorapidity) <6.5.


Measurement of the ratio B(Bc+/- to J/psi pi+/- pi+/- pi-/+)/B(Bc+/- to J/psi pi+/-) and the production cross sections times branching fractions of Bc+/- to J/psi pi+/- and B+/- to J/psi K+/- in pp collisions at sqrt(s) = 7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 01 (2015) 063, 2015.
Inspire Record 1323075 DOI 10.17182/hepdata.39386

The ratio of the production cross sections times branching fractions (sigma(Bc+) B(Bc+ to J/psi pi+))/ (sigma(B+) B(B+ to J/psi K+)) is studied in proton-proton collisions at a center-of-mass energy of 7 TeV with the CMS detector at the LHC. The kinematic region investigated requires Bc+/- and B+/- mesons with transverse momentum pt > 15 GeV and rapidity abs(y) < 1.6. The data sample corresponds to an integrated luminosity of 5.1 inverse femtobarns. The ratio is determined to be [0.48 +/- 0.05 (stat) +/- 0.03 (syst) +/- 0.05 (tau_{Bc})]% The J/psi pi+/- pi+/- pi-/+ decay mode is also observed in the same data sample. Using a model-independent method developed to measure the efficiency given the presence of resonant behaviour in the three-pion system, the ratio of the branching fractions B(Bc+/- to J/psi pi+/- pi+/- pi-/+) / B(Bc+/- to J/psi pi+/-) is measured to be 2.55 +/- 0.80 (stat) +/- 0.33 (syst) +0.04/-0.01 (tau[Bc+]), consistent with the previous LHCb result.

2 data tables match query

The ratio of the production cross sections times branching fractions of $B_c^\pm\to J/\psi\pi^\pm$ and $B^\pm\to J/\psi K^\pm$ is measured in the kinematic region $p_T$> 15 GeV and |y| < 1.6. Beside the statistical and systematic errors, an uncertainty associated to the $B_c^{\pm}$ lifetime is quoted as a separate third error. The $B_c^\pm\to J/\psi\pi^\pm$ reconstruction efficiency has a dependence on the $B_c^\pm$ lifetime. Recently LHCb published a more precise $B_c^\pm$ lifetime measurement, which is significantly higher than the previous world average (PDG 2012). To determine the systematic uncertainty associated with the uncertainty in the $B_c^\pm$ lifetime, the efficiency is evaluated while changing the $B_c^\pm$ lifetime in the simulation to cover the range from the world average minus its one standard deviation uncertainty, to the new LHCb measurement. The resulting variation in the ratio is quoted separately as a lifetime systematic uncertainty ($\tau_{Bc}$). Charge conjugation is implied in the table.

To determine the systematic uncertainty in the ratio of branching fractions associated with the uncertainty in the $B_c^\pm$ lifetime, the efficiency is evaluated while changing the $B_c^\pm$ lifetime in the simulation to cover the range from the world average minus its one standard deviation uncertainty, to the new LHCb measurement. The resulting variation in the ratio is quoted separately as a lifetime systematic uncertainty ($\tau_{Bc}$). Charge conjugation is implied in the table.


Search for a Higgs boson in the mass range from 145 to 1000 GeV decaying to a pair of W or Z bosons

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 10 (2015) 144, 2015.
Inspire Record 1357982 DOI 10.17182/hepdata.70736

A search for a heavy Higgs boson in the H to WW and H to ZZ decay channels is reported. The search is based upon proton-proton collision data samples corresponding to an integrated luminosity of up to 5.1 inverse femtobarns at sqrt(s) = 7 TeV and up to 19.7 inverse femtobarns at sqrt(s) = 8 TeV, recorded by the CMS experiment at the CERN LHC. Several final states of the H to WW and H to ZZ decays are analyzed. The combined upper limit at the 95% confidence level on the product of the cross section and branching fraction exclude a Higgs boson with standard model-like couplings and decays in the range 145 < m[H] < 1000 GeV. We also interpret the results in the context of an electroweak singlet extension of the standard model.

5 data tables match query

Upper limits at 95\% CL on the cross section for a heavy Higgs boson decaying to a pair of W bosons as a function of its mass and its width relative to a SM-like Higgs boson.

Upper limits at 95\% CL on the cross section for a heavy Higgs boson decaying to a pair of Z bosons as a function of its mass and its width relative to a SM-like Higgs boson.

Upper limits at 95% CL on the cross section for a heavy Higgs boson as a function of its mass and its width relative to a SM-like Higgs boson. Both, gluon-gluon fusion and VBF production processes are combined, assuming a SM-like ratio between the two.

More…

Version 2
Measurement of the top quark mass using events with a single reconstructed top quark in pp collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 12 (2021) 161, 2021.
Inspire Record 1911567 DOI 10.17182/hepdata.102987

A measurement of the top quark mass is performed using a data sample enriched with single top quark events produced in the $t$ channel. The study is based on proton-proton collision data, corresponding to an integrated luminosity of 35.9 fb$^{-1}$, recorded at $\sqrt{s}$ = 13 TeV by the CMS experiment at the LHC in 2016. Candidate events are selected by requiring an isolated high-momentum lepton (muon or electron) and exactly two jets, of which one is identified as originating from a bottom quark. Multivariate discriminants are designed to separate the signal from the background. Optimized thresholds are placed on the discriminant outputs to obtain an event sample with high signal purity. The top quark mass is found to be 172.13 $^{+0.76}_{-0.77}$ GeV, where the uncertainty includes both the statistical and systematic components, reaching sub-GeV precision for the first time in this event topology. The masses of the top quark and antiquark are also determined separately using the lepton charge in the final state, from which the mass ratio and difference are determined to be 0.9952 $^{+0.0079}_{-0.0104}$ and 0.83 $^{+1.79}_{-1.35}$ GeV, respectively. The results are consistent with $CPT$ invariance.

38 data tables match query

Top quark mass measured inclusive of lepton flavor and charge. The uncertainties are given in two parts, the first part is the combination of statistical (stat) and profiled (prof) uncertainties and the second part is for the experimental (ext) uncetrinaties.

The top quark mass measured inclusive of lepton flavor and charge. The uncertainties are given in two parts, the first is the combination of statistical (stat) and profiled systematic (prof) uncertainties and the second is the externalized systematic (ext) uncertainties.

Top quark mass measured inclusive of lepton flavor and for positively charged lepton.

More…

Measurement of the cross section for prompt isolated diphoton production using the full CDF Run II data sample

The CDF collaboration Aaltonen, T. ; Amerio, S. ; Amidei, D. ; et al.
Phys.Rev.Lett. 110 (2013) 101801, 2013.
Inspire Record 1207879 DOI 10.17182/hepdata.66020

This Letter reports a measurement of the cross section for producing pairs of central prompt isolated photons in proton-antiproton collisions at a total energy of 1.96 TeV using data corresponding to 9.5/fb integrated luminosity collected with the CDF II detector at the Fermilab Tevatron. The measured differential cross section is compared to three calculations derived from the theory of strong interactions. These include a prediction based on a leading order matrix element calculation merged with parton shower, a next-to-leading order, and a next-to-next-to-leading order calculation. The first and last calculations reproduce most aspects of the data, thus showing the importance of higher-order contributions for understanding the theory of strong interaction and improving measurements of the Higgs boson and searches for new phenomena in diphoton final states.

23 data tables match query

The measured differential cross sections for $M_{\gamma\gamma}$ , together with the predictions from the Sherpa and NNLO Monte Carlos.

The measured differential cross sections for $M_{\gamma\gamma}$ when $P_T > M_{\gamma\gamma}$ , together with the predictions from the Sherpa and NNLO Monte Carlos.

The measured differential cross sections for $M_{\gamma\gamma}$ when $P_T < M_{\gamma\gamma}$ , together with the predictions from the Sherpa and NNLO Monte Carlos.

More…