On the Origin of Inclusive electron Events in e+ e- Annihilation Between 3.6-GeV and 5.2-GeV

The DASP collaboration Brandelik, R. ; Braunschweig, W. ; Martyn, H.-U. ; et al.
Phys.Lett.B 70 (1977) 125, 1977.
Inspire Record 119986 DOI 10.17182/hepdata.27536

The multiplicity distribution of inclusive electron events above 4 GeV cm energy shows two distinct classes of events: two prong no photon and high multiplicity events. If the high multiplicity events are attributed to the semi-leptonic decay of charmed particles the two prong no photon events must come from the weak decay of a different type of particle. The charged K to π ratio was measured for these events. The average number of charged kaons is 0.07 ± 0.06 per two prong event and 0.90 ± 0.18 per multiprong event. Thus the weak current responsible for the low multiplicity events has a small coupling to strange particles.

2 data tables match query

NUMBER OF CHARGED PARTICLES OBSERVED .EQ. 2.

NUMBER OF CHARGED PARTICLES OBSERVED .GE. 3.


Production Characteristics of the F Meson

The DASP collaboration Brandelik, R. ; Braunschweig, W. ; Martyn, H.U. ; et al.
Phys.Lett.B 80 (1979) 412-418, 1979.
Inspire Record 132410 DOI 10.17182/hepdata.27370

Inclusive cross sections of η production by e + e - annihilation for c.m. energies between 4.0 and 5.0 GeV are presented. The η production is shown to be correlated with the production of a weakly decaying particle, indicating that its main source is F production. At the 4.42 GeV resonance it is correlated with a low energy photon, suggesting F F ∗ or F ∗ F ∗ production. A mass determination of the F is made at 4.42 GeV using the F → ηπ decay channel.

1 data table match query

NUMERICAL VALUES MEASURED FROM GRAPH IN PREPRINT. A CHARM MODEL (METHOD 2) GAVE CONSISTENT RESULTS FOR BACKGROUND SEPARATION.