Search for Monochromatic Pion Emission in $\bar{p} p$ Annihilation From Atomic $p$ States

The ASTERIX collaboration Ahmad, S. ; Amsler, Claude ; Armenteros, R. ; et al.
Phys.Lett.B 152 (1985) 135-139, 1985.
Inspire Record 207457 DOI 10.17182/hepdata.49644

Narrow states observable through the emission of monoenergetic charged pions have been searched for in p p annihilation at rest in a gaseous hydrogen target where annihilation from atomic angular momentum L = 1 states dominates. No structure is observed. The 5σ upper limit for the production of narrow states in the mass range 1100–1670 MeV is 2 × 10 −3 of all annihilations.

1 data table match query

X means a narrow state.


Prompt and non-prompt J/psi production in pp collisions at sqrt(s) = 7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 71 (2011) 1575, 2011.
Inspire Record 878118 DOI 10.17182/hepdata.57532

The production of J/psi mesons is studied in pp collisions at sqrt(s)=7 TeV with the CMS experiment at the LHC. The measurement is based on a dimuon sample corresponding to an integrated luminosity of 314 inverse nanobarns. The J/psi differential cross section is determined, as a function of the J/psi transverse momentum, in three rapidity ranges. A fit to the decay length distribution is used to separate the prompt from the non-prompt (b hadron to J/psi) component. Integrated over J/psi transverse momentum from 6.5 to 30 GeV/c and over rapidity in the range |y| < 2.4, the measured cross sections, times the dimuon decay branching fraction, are 70.9 \pm 2.1 (stat.) \pm 3.0 (syst.) \pm 7.8(luminosity) nb for prompt J/psi mesons assuming unpolarized production and 26.0 \pm 1.4 (stat.) \pm 1.6 (syst.) \pm 2.9 (luminosity) nb for J/psi mesons from b-hadron decays.

13 data tables match query

Total cross section within the kinematic limits for prompt and non-prompt J/PSI production times branching ratio into MU+ MU-, assuming zero polarizartion. The second systematic error is the luminosity uncertainty.

Differential inclusive cross J/PSI section for the |rapidity| range 0 to 1.2 for each prompt J/PSI polarization scenario considered.

Differential inclusive cross J/PSI section for the |rapidity| range 1.2 to 1.6 for each prompt J/PSI polarization scenario considered.

More…

Measurements of the ZZ production cross sections in the 2 l 2 nu channel in proton-proton collisions at sqrt(s) = 7 and 8 TeV and combined constraints on triple gauge couplings

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 75 (2015) 511, 2015.
Inspire Record 1353393 DOI 10.17182/hepdata.69984

Measurements of the ZZ production cross sections in proton-proton collisions at center-of-mass energies of 7 and 8 TeV are presented. Candidate events for the leptonic decay mode ZZ to 2 l 2 nu, where l denotes an electron or a muon, are reconstructed and selected from data corresponding to an integrated luminosity of 5.1 (19.6) inverse femtobarns at 7 (8) TeV collected with the CMS experiment. The measured cross sections, sigma(pp to ZZ) = 5.1 -1.4 +1.5 (stat) -1.1 +1.4 (syst) +/- 0.1 (lumi) pb at 7 TeV, and 7.2 -0.8 +0.8 (stat.) -1.5 +1.9 (syst) +/- 0.2 (lumi) pb at 8 TeV, are in good agreement with the standard model predictions with next-to-leading-order accuracy. The selected data are analyzed to search for anomalous triple gauge couplings involving the ZZ final state. In the absence of any deviation from the standard model predictions, limits are set on the relevant parameters. These limits are then combined with the previously published CMS results for ZZ in 4 l final states, yielding the most stringent constraints on the anomalous couplings.

1 data table match query

Using a maximum-likelihood fit to the reduced-MET data distributions, with all the systematic uncertainties incorporated as nuisance parameters, we obtain the following cross sections for the pp->ZZ process (with both Z bosons in the mass range 60-120 GeV). The first systematic uncertainty is the combined systematic uncertainty excluding luminosity, the second is the luminosity. The theory calculations are 6.2+0.3-0.2 pb at 7 TeV and 7.6+0.4-0.3 pb at 8 TeV, including NLO QCD and NLO EW corrections.


Observation of Higgs boson decay to bottom quarks

The CMS collaboration Sirunyan, A. M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 121 (2018) 121801, 2018.
Inspire Record 1691854 DOI 10.17182/hepdata.86132

The observation of the standard model (SM) Higgs boson decay to a pair of bottom quarks is presented. The main contribution to this result is from processes in which Higgs bosons are produced in association with a W or Z boson (VH), and are searched for in final states including 0, 1, or 2 charged leptons and two identified bottom quark jets. The results from the measurement of these processes in a data sample recorded by the CMS experiment in 2017, comprising 41.3 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} =$ 13 TeV, are described. When combined with previous VH measurements using data collected at $\sqrt{s}=$ 7, 8, and 13 TeV, an excess of events is observed at $m_\mathrm{H} =$ 125.09 GeV with a significance of 4.8 standard deviations, where the expectation for the SM Higgs boson is 4.9. The corresponding measured signal strength is 1.01 $\pm$ 0.22. The combination of this result with searches by the CMS experiment for H $\to\mathrm{b\overline{b}}$ in other production processes yields an observed (expected) significance of 5.6 (5.5) standard deviations and a signal strength of 1.04 $\pm$ 0.20.

2 data tables match query

Expected and observed significances, in number of standard deviations, and observed signal strengths for the VH production process with H-->b bbar. Results are shown separately for 2017 data, combined Run 2 (2016 and 2017 data), and for the combination of the Run 1 and Run 2 data. For the 2017 analysis, results are shown separately for the individual mu value for each channel from a combined simultaneous fit to all channels. All results are obtained for mH=125.09 GeV. Data are from Table 2 and 2016 added from Figure 1b.

Best-fit value of the H-->b bbar signal strength with its 1 sigma systematic (red) and total (blue) uncertainties for the five individual production modes considered, as well as the overall combined result. The vertical dashed line indicates the standard model expectation. All results are extracted from a single fit combining all input analyses, with mH = 125.09 GeV. Data from Figure 3.


Measurement of the transverse momentum spectrum of the Higgs boson produced in pp collisions at sqrt(s) = 8 TeV using H to WW decays

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 03 (2017) 032, 2017.
Inspire Record 1467451 DOI 10.17182/hepdata.77058

The cross section for Higgs boson production in pp collisions is studied using the H to WW decay mode, followed by leptonic decays of the W bosons to an oppositely charged electron-muon pair in the final state. The measurements are performed using data collected by the CMS experiment at the LHC at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.4 inverse femtobarns. The Higgs boson transverse momentum (pT) is reconstructed using the lepton pair pT and missing pT. The differential cross section times branching fraction is measured as a function of the Higgs boson pT in a fiducial phase space defined to match the experimental acceptance in terms of the lepton kinematics and event topology. The production cross section times branching fraction in the fiducial phase space is measured to be 39 +/- 8 (stat) +/- 9 (syst) fb. The measurements are found to agree, within experimental uncertainties, with theoretical calculations based on the standard model.

3 data tables match query

The fiducial differential cross section in each Higgs pT bin. The first uncertainty is the total (stat+syst) uncertainty. The second is the statistical uncertainty and the third and fourth are Type A and Type B systematic uncertainties, respectively. The last one is the model dependence uncertainty (Type C).

The measured total cross section in the fiducial region. The first systematic uncertainty is the statistical uncertainty and the second is the systematic.

Correlation matrix among the Higgs pT bins of the differential spectrum.


Measurements of the pp$\to$ZZ production cross section and the Z$\to 4\ell$ branching fraction, and constraints on anomalous triple gauge couplings at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 78 (2018) 165, 2018.
Inspire Record 1625296 DOI 10.17182/hepdata.80152

Four-lepton production in proton-proton collisions, $\mathrm{pp}\to (\mathrm{Z}/ \gamma^*)(\mathrm{Z}/\gamma^*) \to 4\ell$, where $\ell = \mathrm{e}$ or $\mu$, is studied at a center-of-mass energy of 13 TeV with the CMS detector at the LHC. The data sample corresponds to an integrated luminosity of 35.9 fb$^{-1}$. The ZZ production cross section, $\sigma(\mathrm{pp} \to \mathrm{Z}\mathrm{Z}) = 17.2 \pm 0.5\text{ (stat) }\pm 0.7\text{ (syst) }\pm 0.4(\mathrm{theo}) \pm 0.4\text{ (lumi)}$ pb, measured using events with two opposite-sign, same-flavor lepton pairs produced in the mass region $60 < m_{\ell^+\ell^-} < $120 GeV, is consistent with standard model predictions. Differential cross sections are measured and are well described by the theoretical predictions. The Z boson branching fraction to four leptons is measured to be $\mathcal{B}(\mathrm{Z}\to 4\ell) = 4.8 \pm 0.2\text{ (stat) }\pm 0.2\text{ (syst) } \pm 0.1\text{ (theo) }\pm 0.1\text{ (lumi) }\times 10^{-6}$ for events with a four-lepton invariant mass in the range 80 $ < m_{4\ell} < $ 100 GeV and a dilepton mass $m_{\ell\ell} > $4 GeV for all opposite-sign, same-flavor lepton pairs. The results agree with standard model predictions. The invariant mass distribution of the four-lepton system is used to set limits on anomalous ZZZ and ZZ$\gamma$ couplings at 95% confidence level: $-0.0012 < f_4^\mathrm{Z} < 0.0010$, $-0.0010 < f_5^\mathrm{Z} < 0.0013$, $-0.0012 < f_4^{\gamma} < 0.0013$, $-0.0012 < f_5^{\gamma} < 0.0013$.

14 data tables match query

The measured total ZZ cross section using 2016 data. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity and theortical sources, the second is theoretical uncertianty on the extrapolation from the selected region to the total phase space, the third is the luminosity uncertianty

The measured total ZZ cross section using 2015 and 2016. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity and theortical sources, the second is theoretical uncertianty on the extrapolation from the selected region to the total phase space, the third is the luminosity uncertianty

The measured fiducial ZZ cross sections. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity, the second is the luminosity uncertianty

More…

Measurement of the differential dijet production cross section in proton-proton collisions at sqrt(s)=7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Lett.B 700 (2011) 187-206, 2011.
Inspire Record 895742 DOI 10.17182/hepdata.58935

A measurement of the double-differential inclusive dijet production cross section in proton-proton collisions at sqrt(s)=7 TeV is presented as a function of the dijet invariant mass and jet rapidity. The data correspond to an integrated luminosity of 36 inverse picobarns, recorded with the CMS detector at the LHC. The measurement covers the dijet mass range 0.2 TeV to 3.5 TeV and jet rapidities up to |y|=2.5. It is found to be in good agreement with next-to-leading-order QCD predictions.

5 data tables match query

The double differential cross section as a function of the di-jet mass for the range |y_max| = 0.0-0.5, where |y_max| = max(|y1,|y2|) of the two leading jets in the event.

The double differential cross section as a function of the di-jet mass for the range |y_max| = 0.5-1.0, where |y_max| = max(|y1,|y2|) of the two leading jets in the event.

The double differential cross section as a function of the di-jet mass for the range |y_max| = 1.0-1.5, where |y_max| = max(|y1,|y2|) of the two leading jets in the event.

More…

Measurement of the B+ Production Cross Section in pp Collisions at sqrt(s) = 7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M. ; Tumasyan, Armen ; et al.
Phys.Rev.Lett. 106 (2011) 112001, 2011.
Inspire Record 883318 DOI 10.17182/hepdata.57687

Measurements of the total and differential cross sections with respect to transverse momentum and rapidity for B+ mesons produced in pp collisions at sqrt(s) = 7 TeV are presented. The data correspond to an integrated luminosity of 5.8 inverse picobarns collected by the CMS experiment operating at the LHC. The exclusive decay B+ to J/psi K+, with the J/psi decaying to an oppositely charged muon pair, is used to detect B+ mesons and to measure the production cross section as a function of the transverse momentum and rapidity of the B. The total cross section for p_t(B) > 5 GeV and |y(B)| < 2.4 is measured to be 28.1 +/- 2.4 +/- 2.0 +/- 3.1 microbarns, where the first uncertainty is statistical, the second is systematic, and the last is from the luminosity measurement.

3 data tables match query

Total integrated cross section in the given kinematic range. The (sys) error includes the uncertainty in the branching fraction.

Measured differential cross section as a function of the transverse momentum of the B+ particle.

Measured differential cross section as a function of the rapidity of the B+ particle.


Measurements of Inclusive W and Z Cross Sections in pp Collisions at sqrt(s)=7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M. ; Tumasyan, Armen ; et al.
JHEP 01 (2011) 080, 2011.
Inspire Record 881087 DOI 10.17182/hepdata.57952

Measurements of inclusive W and Z boson production cross sections in pp collisions at sqrt(s)=7 TeV are presented, based on 2.9 inverse picobarns of data recorded by the CMS detector at the LHC. The measurements, performed in the electron and muon decay channels, are combined to give sigma(pp to WX) times B(W to muon or electron + neutrino) = 9.95 \pm 0.07(stat.) \pm 0.28(syst.) \pm 1.09(lumi.) nb and sigma(pp to ZX) times B(Z to oppositely charged muon or electron pairs) = 0.931 \pm 0.026(stat.) \pm 0.023(syst.) \pm 0.102(lumi.) nb. Theoretical predictions, calculated at the next-to-next-to-leading order in QCD using recent parton distribution functions, are in agreement with the measured cross sections. Ratios of cross sections, which incur an experimental systematic uncertainty of less than 4%, are also reported.

8 data tables match query

Measured cross sections for combined positive and negative W production.

Measured cross sections for positive W production.

Measured cross sections for negative W production.

More…

Search for an exotic decay of the Higgs boson to a pair of light pseudoscalars in the final state with two muons and two b quarks in pp collisions at 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 795 (2019) 398-423, 2019.
Inspire Record 1709317 DOI 10.17182/hepdata.91235

A search for exotic decays of the Higgs boson to a pair of light pseudoscalar particles a$_1$ is performed under the hypothesis that one of the pseudoscalars decays to a pair of opposite sign muons and the other decays to b$\overline{\mathrm{b}}$. Such signatures are predicted in a number of extensions of the standard model (SM), including next-to-minimal supersymmetry and two-Higgs-doublet models with an additional scalar singlet. The results are based on a data set of proton-proton collisions corresponding to an integrated luminosity of 35.9 fb$^{-1}$, accumulated with the CMS experiment at the CERN LHC in 2016 at a centre-of-mass energy of 13 TeV. No statistically significant excess is observed with respect to the SM backgrounds in the search region for pseudoscalar masses from 20 GeV to half of the Higgs boson mass. Upper limits at 95% confidence level are set on the product of the production cross section and branching fraction, $\sigma_{\mathrm{h}}\mathcal{B}$(h $\to$ a$_1$ a$_1$ $\to$ $\mu^+\mu^-\mathrm{b}\bar{\mathrm{b}}$), ranging from 5 to 33 fb, depending on the pseudoscalar mass. Corresponding limits on the branching fraction, assuming the SM prediction for $\sigma_{\mathrm{h}}$, are (1$-$7)$\times$ 10$^{-4}$.

2 data tables match query

Observed and expected upper limits at 95% CL on the product of the Higgs boson production cross section and B(h->aa->mumubb)

Observed and expected upper limits at 95% CL on the branching fraction of (h->aa->mumubb)