Nuclear modification factors for hadrons at forward and backward rapidities in deuteron gold collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 94 (2005) 082302, 2005.
Inspire Record 665543 DOI 10.17182/hepdata.141362

We report on charged hadron production in deuteron-gold reactions at sqrt(s_NN) = 200 GeV. Our measurements in the deuteron-direction cover 1.4 < eta < 2.2, referred to as forward rapidity, and in the gold-direction -2.0 < eta < -1.4, referred to as backward rapidity, and a transverse momentum range p_T = 0.5-4.0 GeV/c. We compare the relative yields for different deuteron-gold collision centrality classes. We observe a suppression relative to binary collision scaling at forward rapidity, sensitive to low momentum fraction (x) partons in the gold nucleus, and an enhancement at backward rapidity, sensitive to high momentum fraction partons in the gold nucleus.

4 data tables match query

$R_{cp}$ as a function of $p_T$ for Punch-Through Hadrons at forward rapidity and backward rapidity for different centrality classes. Systematic uncertainties which are point-to-point uncorrelated (sys-uncorr) and correlated (sys-corr) are shown.

$R_{cp}$ as a function of $p_T$ for Hadron Decay Muons at forward rapidity and backward rapidity for different centrality classes. Systematic uncertainties which are point-to-point uncorrelated (sys-uncorr) and correlated (sys-corr) are shown.

$R_{cp}$ as a function of $\eta$ for 1.5 < $p_T$ < 4.0 GeV/$c$ for different centrality classes. Systematic uncertainties which are point-to-point uncorrelated (sys-uncorr) and correlated (sys-corr) are shown.

More…

Elliptic flow for $\phi$ mesons and (anti)deuterons in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

The PHENIX collaboration Afanasiev, S. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 99 (2007) 052301, 2007.
Inspire Record 746499 DOI 10.17182/hepdata.141340

Differential elliptic flow (v_2) for phi mesons and (anti)deuterons (d^bar)d is measured for Au+Au collisions at sqrt(s_NN) = 200 GeV. The v_2 for phi mesons follows the trend of lighter pi^+/- and K^+/- mesons, suggesting that ordinary hadrons interacting with standard hadronic cross sections are not the primary driver for elliptic flow development. The v_2 values for (d^bar)d suggest that elliptic flow is additive for composite particles. This further validation of the universal scaling of v_2 per constituent quark for baryons and mesons suggests that partonic collectivity dominates the transverse expansion dynamics.

21 data tables match query

$m_{inv}$ distributions for foreground and background $K^+ K^-$ pairs for 20-60% central Au+Au collisions.

$m_{inv}$ distributions

$<cos(2(\varphi^{pair}-\Phi_2))>$ vs. $m_{inv}$.

More…

Nuclear-Modification Factor for Open-Heavy-Flavor Production at Forward Rapidity in Cu+Cu Collisions at sqrt(s_NN)=200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 86 (2012) 024909, 2012.
Inspire Record 1102910 DOI 10.17182/hepdata.142604

Background: Heavy-flavor production in p+p collisions tests perturbative-quantum-chromodynamics (pQCD) calculations. Modification of heavy-flavor production in heavy-ion collisions relative to binary-collision scaling from p+p results, quantified with the nuclear-modification factor (R_AA), provides information on both cold- and hot-nuclear-matter effects. Purpose: Determine transverse-momentum, pt, spectra and the corresponding R_AA for muons from heavy-flavor mesons decay in p+p and Cu+Cu collisions at sqrt(s_NN)=200 GeV and y=1.65. Method: Results are obtained using the semi-leptonic decay of heavy-flavor mesons into negative muons. The PHENIX muon-arm spectrometers measure the p_T spectra of inclusive muon candidates. Backgrounds, primarily due to light hadrons, are determined with a Monte-Carlo calculation using a set of input hadron distributions tuned to match measured-hadron distributions in the same detector and statistically subtracted. Results: The charm-production cross section in p+p collisions at sqrt{s}=200 GeV, integrated over pt and in the rapidity range 1.4<y<1.9 is found to be dsigma_ccbar/dy = 0.139 +/- 0.029 (stat) ^{+0.051}_{-0.058} (syst) mb. This result is consistent with calculations and with expectations based on the corresponding midrapidity charm-production cross section measured earlier by PHENIX. The R_AA for heavy-flavor muons in Cu+Cu collisions is measured in three centrality intervals for 1<pt<4 GeV/c. Suppression relative to binary-collision scaling (R_AA<1) increases with centrality. Conclusions: Within experimental and theoretical uncertainties, the measured heavy-flavor yield in p+p collisions is consistent with state-of-the-art pQCD calculations. Suppression in central Cu+Cu collisions suggests the presence of significant cold-nuclear-matter effects and final-state energy loss.

7 data tables match query

Production cross section of negative muons from heavy-flavor mesons decay as a function of $p_T$ in $p$+$p$ collisions at $\sqrt{s}=200$ GeV.

Invariant production yields of negative muons from heavy-flavor-mesons decay as a function $p_T$ in Cu+Cu collisions for three different centrality intervals (40-94%, 20-40%, and 0-20%), scaled by powers of ten for clarity. The solid line associated to each set of points corresponds to a fit to the $p$+$p$ invariant yield distribution described in the text, scaled by the appropriate number of binary collisions $N_{coll}$ when comparing to the Cu+Cu measurements.

Invariant production yields of negative muons from heavy-flavor-mesons decay as a function $p_T$ in $p$+$p$ collisions at $\sqrt{s}=200$ GeV. The solid line associated to each set of points corresponds to a fit to the $p$+$p$ invariant yield distribution described in the text, scaled by the appropriate number of binary collisions $N_{coll}$ when comparing to the Cu+Cu measurements.

More…

Centrality dependence of direct photon production in s(NN)**(1/2) = 200-GeV Au + Au collisions.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 94 (2005) 232301, 2005.
Inspire Record 678021 DOI 10.17182/hepdata.141029

The first measurement of direct photons in Au+Au collisions at sqrt(s_NN) = 200 GeV is presented. The direct photon signal is extracted as a function of the Au+Au collision centrality and compared to NLO pQCD calculations. The direct photon yield is shown to scale with the number of nucleon-nucleon collisions for all centralities.

5 data tables match query

Double ratio of measured $(\gamma/\pi^0)_{Measured}$ invariant yield ratio to the background decay $(\gamma/\pi^0)_{Background}$ ratio as a function of $p_T$ for minimum bias and for five centralities of Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. The bin range is not an uncertainty in the x-axis because the actual uncertainty by having the finite bin width is corrected for by the bin-shift correction. These bins were constructed using the corrected finite values as centers.

Double ratio of measured $(\gamma/\pi^0)_{Measured}$ invariant yield ratio to the background decay $(\gamma/\pi^0)_{Background}$ ratio as a function of $p_T$ for minimum bias and for five centralities of Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. The bin range is not an uncertainty in the x-axis because the actual uncertainty by having the finite bin width is corrected for by the bin-shift correction. These bins were constructed using the corrected finite values as centers.

Direct $\gamma$ invariant yields as a function of transverse momentum for 9 centrality selections and minimum bias Au+AU collisions at $\sqrt{s_{NN}}$ = 200 GeV. Data with no errors represents 90% confidence level upper limit. The bin range is not an uncertainty in the x-axis because the actual uncertainty by having the finite bin width is corrected for by the bin-shift correction. These bins were constructed using the corrected finite values as centers.

More…

Measurement of identified pi0 and inclusive photon v(2) and implication to the direct photon production in s(NN)**(1/2) = 200-GeV Au + Au collisions.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 96 (2006) 032302, 2006.
Inspire Record 690050 DOI 10.17182/hepdata.142374

The azimuthal distribution of identified pi^0 and inclusive photons has been measured in sqrt{s_{NN}} = 200 GeV Au+Au collisions with the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC). The second harmonic parameter (v_2) was measured to describe the observed anisotropy of the azimuthal distribution. The measured inclusive photon v_2 is consistent with the value expected for the photons from hadron decay and is also consistent with the lack of direct photon signal over the measured p_T range 1-6 GeV/c. An attempt is made to extract v_2 of direct photons.

5 data tables match query

The measured $v_2$ of $\pi^0$ ($v_2^{\pi^0}$) for 4 centrality selections.

The measured $v_2$ of inclusive photon ($v_2^{inclusive \gamma}$) for 4 centrality selections.

The expected photon $v_2$ from hadronic decay $v_2^{(b.g.)}$ and the subtracted $v_2$ quantity $R v_2^{(inclusive \gamma)}$ - $v_2^{(b.g.)}$.

More…

Measurement of non-random event-by-event fluctuations of average transverse momentum in s**(1/2) = 200-GeV Au + Au and p + p collisions.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 93 (2004) 092301, 2004.
Inspire Record 630161 DOI 10.17182/hepdata.143470

Event-by-event fluctuations of the average transverse momentum of produced particles near mid-rapidity have been measured by the PHENIX Collaboration in sqrt(s_NN)=200 GeV Au+Au and p+p collisions at the Relativistic Heavy Ion Collider. The fluctuations are observed to be in excess of the expectation for statistically independent particle emission for all centralities. The excess fluctuations exhibit a dependence on both the centrality of the collision and on the transverse momentum window over which the average is calculated. Both the centrality and p_T dependence can be well reproduced by a simulation of random particle production with the addition of contributions from hard scattering processes.

4 data tables match query

Comparisons between the data and mixed event $M_{p_T}$ distributions for the representative 0-5% centrality classes. Also given are the residuals between the data and mixed events in units of standard deviations of the data points form the mixed event points.

Comparisons between the data and mixed event $M_{p_T}$ distributions for the representative 30-35% centrality classes. Also given are the residuals between the data and mixed events in units of standard deviations of the data points form the mixed event points.

$F_{p_T}$ (in percent, 0.2 GeV/$c$ < $p_T$ < 2.0 GeV/$c$) as a function of centrality, which is expressed in terms of the number of participants in the collision, $N_{part}$.

More…

Trends in Yield and Azimuthal Shape Modification in Dihadron Correlations in Relativistic Heavy Ion Collisions

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 104 (2010) 252301, 2010.
Inspire Record 845169 DOI 10.17182/hepdata.146557

Fast parton probes produced by hard scattering and embedded within collisions of large nuclei have shown that partons suffer large energy loss and that the produced medium may respond collectively to the lost energy. We present measurements of neutral pion trigger particles at transverse momenta p^t_T = 4-12 GeV/c and associated charged hadrons (p^a_T = 0.5-7 GeV/c) as a function of relative azimuthal angle Delta Phi at midrapidity in Au+Au and p+p collisions at sqrt(s_NN) = 200 GeV. These data lead to two major observations. First, the relative angular distribution of low momentum hadrons, whose shape modification has been interpreted as a medium response to parton energy loss, is found to be modified only for p^t_T &lt; 7 GeV/c. At higher p^t_T, the data are consistent with unmodified or very weakly modified shapes, even for the lowest measured p^a_T. This observation presents a quantitative challenge to medium response scenarios. Second, the associated yield of hadrons opposite to the trigger particle in Au+Au relative to that in p+p (I_AA) is found to be suppressed at large momentum (IAA ~ 0.35-0.5), but less than the single particle nuclear modification factor (R_AA ~0.2).

16 data tables match query

Average away-side $I^{head}_{AA}$ above 2 GeV/$c$ for various $\pi^0$ trigger momenta in central and midcentral collisions where $|\Delta\phi - \pi| < \pi/6$. Note: a 6% scale uncertainty applies to all $I_{AA}$ values.

Away-side jet widths from a Gaussian fit by $h^{\pm}$ partner momentum for various $\pi^0$ trigger momenta in $p+p$ collisions.

Away-side jet widths from a Gaussian fit by $h^{\pm}$ partner momentum for various $\pi^0$ trigger momenta in Au+Au collisions.

More…

J/psi suppression at forward rapidity in Au+Au collisions at sqrt(s_NN)=39 and 62.4 GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 86 (2012) 064901, 2012.
Inspire Record 1127261 DOI 10.17182/hepdata.143112

We present measurements of the J/psi invariant yields in sqrt(s_NN)=39 and 62.4 GeV Au+Au collisions at forward rapidity (1.2<|y|<2.2). Invariant yields are presented as a function of both collision centrality and transverse momentum. Nuclear modifications are obtained for central relative to peripheral Au+Au collisions (R_CP) and for various centrality selections in Au+Au relative to scaled p+p cross sections obtained from other measurements (R_AA). The observed suppression patterns at 39 and 62.4 GeV are quite similar to those previously measured at 200 GeV. This similar suppression presents a challenge to theoretical models that contain various competing mechanisms with different energy dependencies, some of which cause suppression and others enhancement.

7 data tables match query

Estimates used for the 39- and 62.4-GeV $J/\psi$ $p$+$p$ cross sections along with their uncertainties.

$J/\psi$ invariant yields are shown for Au+Au collisions at 39 and 62.4 GeV as a function of the number of participating nucleons.

$J/\psi$ invariant yields are shown for Au+Au collisions at 39 and 62.4 GeV as a function of the number of participating nucleons.

More…

Charged hadron multiplicity fluctuations in Au+Au and Cu+Cu collisions from sqrt(s_NN) = 22.5 to 200 GeV

The PHENIX collaboration Adare, A. ; Adler, S.S. ; Afanasiev, S. ; et al.
Phys.Rev.C 78 (2008) 044902, 2008.
Inspire Record 785509 DOI 10.17182/hepdata.143616

A comprehensive survey of event-by-event fluctuations of charged hadron multiplicity in relativistic heavy ions is presented. The survey covers Au+Au collisions at sqrt(s_NN) = 62.4 and 200 GeV, and Cu+Cu collisions sqrt(s_NN) = 22.5, 62.4, and 200 GeV. Fluctuations are measured as a function of collision centrality, transverse momentum range, and charge sign. After correcting for non-dynamical fluctuations due to fluctuations in the collision geometry within a centrality bin, the remaining dynamical fluctuations expressed as the variance normalized by the mean tend to decrease with increasing centrality. The dynamical fluctuations are consistent with or below the expectation from a superposition of participant nucleon-nucleon collisions based upon p+p data, indicating that this dataset does not exhibit evidence of critical behavior in terms of the compressibility of the system. An analysis of Negative Binomial Distribution fits to the multiplicity distributions demonstrates that the heavy ion data exhibit weak clustering properties.

86 data tables match query

Additional information containing number of events which were used to reconstruct the numvers matching to Figure 1 and 2.

Additional information containing number of events which were used to reconstruct the numvers matching to Figure 1 and 2.

Additional information containing number of events which were used to reconstruct the numvers matching to Figure 1 and 2.

More…

Net charge fluctuations in Au + Au interactions at s(NN)**(1/2) = 130-GeV.

The PHENIX collaboration Adcox, K. ; Adler, S.S. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 89 (2002) 082301, 2002.
Inspire Record 584417 DOI 10.17182/hepdata.143184

Data from Au + Au interactions at sqrt(s_NN) = 130 GeV, obtained with the PHENIX detector at RHIC, are used to investigate local net charge fluctuations among particles produced near mid-rapidity. According to recent suggestions, such fluctuations may carry information from the Quark Gluon Plasma. This analysis shows that the fluctuations are dominated by a stochastic distribution of particles, but are also sensitive to other effects, like global charge conservation and resonance decays.

5 data tables match query

The normalized variance $v(Q)$as a function of $n_{ch}$.

The normalized variance $v(R)$ as a function of $n_{ch}$.

The normalized variance $v(Q)$ for different centrality classes.

More…

Transverse momentum and centrality dependence of dihadron correlations in Au+Au collisions at sqrt(s_NN)=200 GeV: Jet-quenching and the response of partonic matter

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 77 (2008) 011901, 2008.
Inspire Record 751182 DOI 10.17182/hepdata.143605

Azimuthal angle \Delta\phi correlations are presented for charged hadrons from dijets for 0.4 < p_T < 10 GeV/c in Au+Au collisions at sqrt(s_NN) = 200 GeV. With increasing p_T, the away-side distribution evolves from a broad to a concave shape, then to a convex shape. Comparisons to p+p data suggest that the away-side can be divided into a partially suppressed 'head' region centered at Delta\phi ~ \pi, and an enhanced 'shoulder' region centered at Delta\phi ~ \pi +/- 1.1. The p_T spectrum for the 'head' region softens toward central collisions, consistent with the onset of jet quenching. The spectral slope for the 'shoulder' region is independent of centrality and trigger p_T, which offers constraints on energy transport mechanisms and suggests that the 'shoulder' region contains the medium response to energetic jets.

6 data tables match query

<p>Per-trigger yield versus $\Delta\phi$ for various trigger and partner $p_T$ ($p_T^A$ $\otimes$ $p_T^B$), in $p$+$p$ and 0-20% Au+Au collisions.</p> <p><i>The systematic errors on $v_2$ are represented by "sys. corr." and are dominated by the reaction plane resolution. The fit that accounts for the overlap of the near- and away-side Gaussians at $\Delta\phi_{min}$ gives systematically lower $b_0$ values that that for ZYAM, and is assigned as the differences as one-sided systematic errors on $b_0$ represented by "sys. uncorr.".

<p>Per-trigger yield versus $\Delta\phi$ for various trigger and partner $p_T$ ($p_T^A$ $\otimes$ $p_T^B$), in $p$+$p$ and 0-20% Au+Au collisions.</p> <p><i>The systematic errors on $v_2$ are represented by "sys. corr." and are dominated by the reaction plane resolution. The fit that accounts for the overlap of the near- and away-side Gaussians at $\Delta\phi_{min}$ gives systematically lower $b_0$ values that that for ZYAM, and is assigned as the differences as one-sided systematic errors on $b_0$ represented by "sys. uncorr.".</p></i>

<p>$R_{HS}$ versus $p_T^B$ for $p$+$p$ and Au+Au collisions for four trigger selections.</p> <p><i>The systematic errors on $v_2$ are represented by "sys. corr." and are dominated by the reaction plane resolution. The fit that accounts for the overlap of the near- and away-side Gaussians at $\Delta\phi_{min}$ gives systematically lower $b_0$ values that that for ZYAM, and is assigned as the differences as one-sided systematic errors on $b_0$ represented by "sys. uncorr.".</p></i>

More…

Suppression pattern of neutral pions at high transverse momentum in Au+Au collisions at sqrt(s_NN) = 200 GeV and constraints on medium transport coefficients

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 101 (2008) 232301, 2008.
Inspire Record 778168 DOI 10.17182/hepdata.141030

For Au + Au collisions at 200 GeV we measure neutral pion production with good statistics for transverse momentum, p_T, up to 20 GeV/c. A fivefold suppression is found, which is essentially constant for 5 < p_T < 20 GeV/c. Experimental uncertainties are small enough to constrain any model-dependent parameterization for the transport coefficient of the medium, e.g. \mean(q^hat) in the parton quenching model. The spectral shape is similar for all collision classes, and the suppression does not saturate in Au+Au collisions/ instead, it increases proportional to the number of participating nucleons, as N_part^2/3.

12 data tables match query

$\pi^0$ invariant yields for different centralities. The bin range is not an uncertainty in the x-axis because the actual uncertainty by having the finite bin width is corrected for by the bin-shift correction. These bins were constructed using the corrected finite values as centers.

$\pi^0$ invariant yields for different centralities. The bin range is not an uncertainty in the x-axis because the actual uncertainty by having the finite bin width is corrected for by the bin-shift correction. These bins were constructed using the corrected finite values as centers.

$\pi^0$ invariant yields for different centralities. The bin range is not an uncertainty in the x-axis because the actual uncertainty by having the finite bin width is corrected for by the bin-shift correction. These bins were constructed using the corrected finite values as centers.

More…

Source breakup dynamics in Au+Au Collisions at sqrt(s_NN)=200 GeV via three-dimensional two-pion source imaging

The PHENIX collaboration Afanasiev, S. ; Aidala, Christine Angela ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 100 (2008) 232301, 2008.
Inspire Record 771583 DOI 10.17182/hepdata.140842

A three-dimensional (3D) correlation function obtained from mid-rapidity, low pT pion pairs in central Au+Au collisions at sqrt(s_NN)=200 GeV is studied. The extracted model-independent source function indicates a long range tail in the directions of the pion pair transverse momentum (out) and the beam (long). Model comparisons to these distensions indicate a proper breakup time \tau_0 ~ 9 fm/c and a mean proper emission duration \Delta\tau ~ 2 fm/c, leading to sizable emission time differences (<|\Delta \tau_LCM |> ~ 12 fm/c), partly due to resonance decays. They also suggest an outside-in 'burning' of the emission source reminiscent of many hydrodynamical models.

41 data tables match query

1D correlation function. Systematic errors are less than the statistical errors.

Experimental correlation moments $R^0(q)$ Data. Systematic errors are less than the statistical errors.

Experimental correlation moments $R^0(q)$ Fit. Systematic errors are less than the statistical errors.

More…

Single electrons from heavy flavor decays in p + p collisions at s**(1/2) = 200-GeV.

The PHENIX collaboration ~Adler, S.S. ; ~Afanasiev, S. ; ~Aidala, C. ; et al.
Phys.Rev.Lett. 96 (2006) 032001, 2006.
Inspire Record 689883 DOI 10.17182/hepdata.139174

The invariant differential cross section for inclusive electron production in $p + p$ collisions at $\sqrt{s} = 200$~GeV has been measured by the PHENIX experiment at the Relativistic Heavy Ion Collider over the transverse momentum range $0.4 \le p_T \le 5.0$~GeV/$c$ in the central rapidity region ($|\eta| \le 0.35$). The contribution to the inclusive electron spectrum from semileptonic decays of hadrons carrying heavy flavor, {\it i.e.} charm quarks or, at high $p_T$, bottom quarks, is determined via three independent methods. The resulting electron spectrum from heavy flavor decays is compared to recent leading and next-to-leading order perturbative QCD calculations. The total cross section of charm quark-antiquark pair production is determined to be $\sigma_{c\bar{c}} = 0.92 \pm 0.15 {\rm (stat.)} \pm 0.54 {\rm (sys.)}$~mb.

2 data tables match query

Inclusive electron invariant differential cross section.

Non-photonic electron invariant cross section.


Single identified hadron spectra from s(NN)**1/2 = 130-GeV Au + Au collisions.

The PHENIX collaboration Adcox, K. ; Adler, S.S. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 69 (2004) 024904, 2004.
Inspire Record 623413 DOI 10.17182/hepdata.149578

Transverse momentum spectra and yields of hadrons are measured by the PHENIX collaboration in Au + Au collisions at sqrt(s_NN) = 130 GeV at the Relativistic Heavy Ion Collider (RHIC). The time-of-flight resolution allows identification of pions to transverse momenta of 2 GeV/c and protons and antiprotons to 4 GeV/c. The yield of pions rises approximately linearly with the number of nucleons participating in the collision, while the number of kaons, protons, and antiprotons increases more rapidly. The shape of the momentum distribution changes between peripheral and central collisions. Simultaneous analysis of all the p_T spectra indicates radial collective expansion, consistent with predictions of hydrodynamic models. Hydrodynamic analysis of the spectra shows that the expansion velocity increases with collision centrality and collision energy. This expansion boosts the particle momenta, causing the yield from soft processes to exceed that for hard to large transverse momentum, perhaps as large as 3 GeV/c.

30 data tables match query

The sources of systematic uncertainties in $\langle p_T \rangle$ and $dN$/$dy$.

The $dN$/$dy$ at midrapidity for hadrons produced at midrapidity in each centrality class.

The resulting inverse slopes in MeV after fitting an $m_T$ exponential to the spectra in the range $m_T$-$m_0$ < 1 GeV in each event centrality classes. The pion resonance region is excluded in the fits. The equivalent $p_T$ fit range for each particle is shown accordingly.

More…

Dielectron production in Au$+$Au collisions at $\sqrt{s_{NN}}$=200 GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 93 (2016) 014904, 2016.
Inspire Record 1393530 DOI 10.17182/hepdata.143067

We present measurements of $e^+e^-$ production at midrapidity in Au$+$Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV. The invariant yield is studied within the PHENIX detector acceptance over a wide range of mass ($m_{ee} <$ 5 GeV/$c^2$) and pair transverse momentum ($p_T$ $<$ 5 GeV/$c$), for minimum bias and for five centrality classes. The \ee yield is compared to the expectations from known sources. In the low-mass region ($m_{ee}=0.30$--0.76 GeV/$c^2$) there is an enhancement that increases with centrality and is distributed over the entire pair \pt range measured. It is significantly smaller than previously reported by the PHENIX experiment and amounts to $2.3\pm0.4({\rm stat})\pm0.4({\rm syst})\pm0.2^{\rm model}$ or to $1.7\pm0.3({\rm stat})\pm0.3({\rm syst})\pm0.2^{\rm model}$ for minimum bias collisions when the open-heavy-flavor contribution is calculated with {\sc pythia} or {\sc mc@nlo}, respectively. The inclusive mass and $p_T$ distributions as well as the centrality dependence are well reproduced by model calculations where the enhancement mainly originates from the melting of the $\rho$ meson resonance as the system approaches chiral symmetry restoration. In the intermediate-mass region ($m_{ee}$ = 1.2--2.8 GeV/$c^2$), the data hint at a significant contribution in addition to the yield from the semileptonic decays of heavy-flavor mesons.

2 data tables match query

Cocktail of hadronic sources for the 2010 run using the PYTHIA generator for the open heavy flavor contributions.

Invariant mass spectrum of $e^+e^-$ pairs in MB Au+Au collisions within the PHENIX acceptance compared to the cocktail of expected decays.


Measurement of higher cumulants of net-charge multiplicity distributions in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=7.7-200$ GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 93 (2016) 011901, 2016.
Inspire Record 1378005 DOI 10.17182/hepdata.146751

We report the measurement of cumulants ($C_n, n=1\ldots4$) of the net-charge distributions measured within pseudorapidity ($|\eta|<0.35$) in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=7.7-200$ GeV with the PHENIX experiment at the Relativistic Heavy Ion Collider. The ratios of cumulants (e.g. $C_1/C_2$, $C_3/C_1$) of the net-charge distributions, which can be related to volume independent susceptibility ratios, are studied as a function of centrality and energy. These quantities are important to understand the quantum-chromodynamics phase diagram and possible existence of a critical end point. The measured values are very well described by expectation from negative binomial distributions. We do not observe any nonmonotonic behavior in the ratios of the cumulants as a function of collision energy. The measured values of $C_1/C_2 = \mu/\sigma^2$ and $C_3/C_1 = S\sigma^3/\mu$ can be directly compared to lattice quantum-chromodynamics calculations and thus allow extraction of both the chemical freeze-out temperature and the baryon chemical potential at each center-of-mass energy.

10 data tables match query

Efficiency corrected cumulants of net-charge distributions as a function of $\langle N_{part} \rangle$ from Au+Au collisions at different collision energies.

Efficiency corrected cumulants of net-charge distributions as a function of $\langle N_{part} \rangle$ from Au+Au collisions at different collision energies.

Efficiency corrected cumulants of net-charge distributions as a function of $\langle N_{part} \rangle$ from Au+Au collisions at different collision energies.

More…

System size and energy dependence of jet-induced hadron pair correlation shapes in Cu + Cu and Au + Au collisions at s(NN)**(1/2) = 200-GeV and 62.4-GeV.

The PHENIX collaboration Adare, A. ; Adler, S.S. ; Afanasiev, S. ; et al.
Phys.Rev.Lett. 98 (2007) 232302, 2007.
Inspire Record 731669 DOI 10.17182/hepdata.142605

We present azimuthal angle correlations of intermediate transverse momentum (1-4 GeV/c) hadrons from {dijets} in Cu+Cu and Au+Au collisions at sqrt(s_NN) = 62.4 and 200 GeV. The away-side dijet induced azimuthal correlation is broadened, non-Gaussian, and peaked away from \Delta\phi=\pi in central and semi-central collisions in all the systems. The broadening and peak location are found to depend upon the number of participants in the collision, but not on the collision energy or beam nuclei. These results are consistent with sound or shock wave models, but pose challenges to Cherenkov gluon radiation models.

6 data tables match query

The measured correlation $C(\Delta\phi)$ and the dijet correlation $J(\Delta\phi)$ in central Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.

Dijet correlations in Au+Au and Cu+Cu collisions at $\sqrt{s_{NN}}$ = 62.4 and 200 GeV.

Dijet correlations in Au+Au and Cu+Cu collisions at $\sqrt{s_{NN}}$ = 62.4 and 200 GeV.

More…

Centrality dependence of the high p(T) charged hadron suppression in Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The PHENIX collaboration Adcox, K. ; Adler, Stephen Scott ; Ajitanand, N.N. ; et al.
Phys.Lett.B 561 (2003) 82-92, 2003.
Inspire Record 590820 DOI 10.17182/hepdata.141648

PHENIX has measured the centrality dependence of charged hadron p_T spectra from central Au+Au collisions at sqrt(s_NN)=130 GeV. The truncated mean p_T decreases with centrality for p_T > 2 GeV/c, indicating an apparent reduction of the contribution from hard scattering to high p_T hadron production. For central collisions the yield at high p_T is shown to be suppressed compared to binary nucleon-nucleon collision scaling of p+p data. This suppression is monotonically increasing with centrality, but most of the change occurs below 30% centrality, i.e. for collisions with less than about 140 participating nucleons. The observed p_T and centrality dependence is consistent with the particle production predicted by models including hard scattering and subsequent energy loss of the scattered partons in the dense matter created in the collisions.

6 data tables match query

Number of participants and binary collisions and their systematic errors for the individual centrality selections used in this analysis. Also given is the ratio of the number of binary collisions for the most central sample relative to the one for each sample. The last column quantifies the ratio of binary collisions to participant pairs.

The ratio $p/h$ represents the proton plus anti-proton yield relative to the total charged hadron multiplicity. This shows the $p_T$ dependence of $p/h$ for minimum bias events.

The ratio $p/h$ represents the proton plus anti-proton yield relative to the total charged hadron multiplicity. This shows the centrality dependence of $p/h$ for $p_T >$ 1.8 GeV/$c$.

More…

Heavy Quark Production in p+p and Energy Loss and Flow of Heavy Quarks in Au+Au Collisions at sqrt(s_NN)=200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 84 (2011) 044905, 2011.
Inspire Record 854475 DOI 10.17182/hepdata.142339

Transverse momentum (p^e_T) spectra of electrons from semileptonic weak decays of heavy flavor mesons in the range of 0.3 < p^e_T < 9.0 GeV/c have been measured at mid-rapidity (|eta| < 0.35) by the PHENIX experiment at the Relativistic Heavy Ion Collider in p+p and Au+Au collisions at sqrt(s_NN)=200 GeV. The nuclear modification factor R_AA with respect to p+p collisions indicates substantial energy loss of heavy quarks in the produced medium. In addition, the azimuthal anisotropy parameter v_2 has been measured for 0.3 < p^e_T < 5.0 GeV/c in Au+Au collisions. Comparisons of R_AA and v_2 are made to various model calculations.

12 data tables match query

Charm cross section per $N$+$N$ collision in centrality bins in Au+Au and $p$+$p$. $T_{AA}$ is the nuclear overlap integral of the centrality.

Charm cross section per $N$+$N$ collision in centrality bins in Au+Au and $p$+$p$. $T_{AA}$ is the nuclear overlap integral of the centrality.

Heavy-flavor $e^{\pm}$ $v_2$ from Au+Au collisions, for the centralities indicated.

More…

Centrality dependence of low-momentum direct-photon production in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 91 (2015) 064904, 2015.
Inspire Record 1296308 DOI 10.17182/hepdata.142985

The PHENIX experiment at RHIC has measured the centrality dependence of the direct photon yield from Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV down to $p_T=0.4$ GeV/$c$. Photons are detected via photon conversions to $e^+e^-$ pairs and an improved technique is applied that minimizes the systematic uncertainties that usually limit direct photon measurements, in particular at low $p_T$. We find an excess of direct photons above the $N_{\rm coll}$-scaled yield measured in $p$$+$$p$ collisions. This excess yield is well described by an exponential distribution with an inverse slope of about 240 MeV/$c$ in the $p_T$ range from 0.6--2.0 GeV/$c$. While the shape of the $p_T$ distribution is independent of centrality within the experimental uncertainties, the yield increases rapidly with increasing centrality, scaling approximately with $N_{\rm part}^\alpha$, where $\alpha=1.48{\pm}0.08({\rm stat}){\pm}0.04({\rm syst})$.

6 data tables match query

Ratio $R_{\gamma}$ as function of photon $p_T$ from the 2007 and 2010 data sets in minimum-bias Au+Au collisions, and the $R_{\gamma}$ in the combined 2007+2010 measurement.

Ratio $R_{\gamma}$ as function of photon $p_T$ for the combined 2007 and 2010 data sets in different centrality bins.

Direct photon $p_T$ spectra in different centrality bins.

More…

Observation of direct-photon collective flow in sqrt(s_NN)=200 GeV Au+Au collisions

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 109 (2012) 122302, 2012.
Inspire Record 900818 DOI 10.17182/hepdata.144510

The second Fourier component v_2 of the azimuthal anisotropy with respect to the reaction plane was measured for direct photons at midrapidity and transverse momentum (p_T) of 1--13 GeV/c in Au+Au collisions at sqr(s_NN)=200 GeV. Previous measurements of this quantity for hadrons with p_T < 6 GeV/c indicate that the medium behaves like a nearly perfect fluid, while for p_T > 6 GeV/c a reduced anisotropy is interpreted in terms of a path-length dependence for parton energy loss. In this measurement with the PHENIX detector at the Relativistic Heavy Ion Collider we find that for p_T > 4 GeV/c the anisotropy for direct photons is consistent with zero, as expected if the dominant source of direct photons is initial hard scattering. However, in the p_T < 4 GeV/c region dominated by thermal photons, we find a substantial direct photon v_2 comparable to that of hadrons, whereas model calculations for thermal photons in this kinematic region significantly underpredict the observed v_2.

4 data tables match query

$v_2$ in minimum bias collisions, using two different reaction plane detectors: (solid black circles) BBC and (solid red squares) RXN for (a) $\pi^0$, (b) inclusive photon, and (c) direct photon.

Centrality dependence of $v_2$ (a, c, e) for (solid-black circles) $\pi^0$, (solid-red squares) inclusive photons, and (b, d, f) (solid-black circles) direct photons measured with the BBC detector for (a),(b) minimum-bias (c),(d) 0%-20% centrality, and (e),(f) 20%-40% centrality.

Centrality dependence of $v_2$ (a, c, e) for (solid-black circles) $\pi^0$, (solid-red squares) inclusive photons, and (b, d, f) (solid-black circles) direct photons measured with the BBC detector for (a),(b) minimum-bias (c),(d) 0%-20% centrality, and (e),(f) 20%-40% centrality.

More…

Production of Phi mesons at mid-rapidity in s**(1/2)(NN) = 200-GeV Au + Au collisions at RHIC.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 72 (2005) 014903, 2005.
Inspire Record 661505 DOI 10.17182/hepdata.141893

We present the first results of meson production in the K^+K^- decay channel from Au+Au collisions at sqrt(s_NN) = 200 GeV as measured at mid-rapidity by the PHENIX detector at RHIC. Precision resonance centroid and width values are extracted as a function of collision centrality. No significant variation from the PDG accepted values is observed. The transverse mass spectra are fitted with a linear exponential function for which the derived inverse slope parameter is seen to be constant as a function of centrality. These data are also fitted by a hydrodynamic model with the result that the freeze-out temperature and the expansion velocity values are consistent with the values previously derived from fitting single hadron inclusive data. As a function of transverse momentum the collisions scaled peripheral.to.central yield ratio RCP for the is comparable to that of pions rather than that of protons. This result lends support to theoretical models which distinguish between baryons and mesons instead of particle mass for explaining the anomalous proton yield.

22 data tables match query

Average number of participants and collisions in Au + Au reaction at RHIC for different centralities determined from a Glauber model.

$\phi$ meson mass centroid and width for minimum-bias Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.

Minimum-bias $dN/dy$ and $T$ for different subsystem combinations.

More…

Jet structure of baryon excess in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 71 (2005) 051902, 2005.
Inspire Record 656142 DOI 10.17182/hepdata.142148

Two particle correlations between identified meson and baryon trigger particles with 2.5 < p_T < 4.0 GeV/c and lower p_T charged hadrons have been measured at midrapidity by the PHENIX experiment at RHIC in p+p, d+Au and Au+Au collisions at sqrt(s_NN) = 200 GeV. The probability of finding a hadron near in azimuthal angle to the trigger particle is almost identical for leading mesons and baryons for non-central Au+Au. The yield for both trigger baryons and mesons is significantly higher in Au+Au than in p+p and d+Au, except for trigger baryons in central collisions. The baryon excess is likely to arise predominantly from hard scattering processes.

19 data tables match query

$\Delta\phi$ distributions for meson and baryon triggers with 2.5 < $p_T$ < 4.0 GeV/$c$ and associated charged hadrons with 1.7 < $p_T$ < 2.5 GeV/$c$ for five centralities in Au+Au collisions.

$\Delta\phi$ distributions for meson triggers with 2.5 < $p_T$ < 4.0 GeV/$c$ and associated charged hadrons with 1.7 < $p_T$ < 2.5 GeV/$c$ in $d$+Au collisions.

$\Delta\phi$ distributions unidentified triggers with 2.5 < $p_T$ < 4.0 GeV/$c$ and associated charged hadrons with 1.7 < $p_T$ < 2.5 GeV/$c$ in $p$+$p$ collisions.

More…

Kaon interferometric probes of space-time evolution in Au+Au collisions at sqrt(s_NN) = 200 GeV

The PHENIX collaboration Afanasiev, S. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 103 (2009) 142301, 2009.
Inspire Record 816475 DOI 10.17182/hepdata.141728

Bose-Einstein correlations of charged kaons are measured for Au+Au collisions at sqrt(s_NN) = 200 GeV and are compared to charged pion probes, which have a larger hadronic scattering cross section. Three dimensional Gaussian source radii are extracted, along with a one-dimensional kaon emission source function. The centrality dependences of the three Gaussian radii are well described by a single linear function if N_part^1/3 with zero intercept. Imaging analysis shows a deviation from a Gaussian tail at r >~ 10 fm, although the bulk emission at lower radius is well-described by a Gaussian. The presence of a non-Gaussian tail in the kaon source reaffirms that the particle emission region in a heavy ion collision is extended, and that similar measurements with pions are not solely due to the decay of long-lived resonances.

7 data tables match query

3D correlation function of charged kaon pairs measured for 0.3 < $k_T$ < 1.5 GeV/$c$ at 0-30% centrality in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.

3D Gaussian HBT radius parameters for charged kaon pairs as a function of $N_{part}^{1/3}$ measured for 0.3 < $k_T$ < 1.5 GeV/$c$ and $m_T$ measured for 0-30% centrality in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.

3D Gaussian HBT radius parameters for charged kaon pairs as a function of $N_{part}^{1/3}$ measured for 0.3 < $k_T$ < 1.5 GeV/$c$ and $m_T$ measured for 0-30% centrality in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.

More…