Center of mass energy and system-size dependence of photon production at forward rapidity at RHIC

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Nucl.Phys.A 832 (2010) 134-147, 2010.
Inspire Record 822997 DOI 10.17182/hepdata.101347

We present the multiplicity and pseudorapidity distributions of photons produced in Au+Au and Cu+Cu collisions at \sqrt{s_NN} = 62.4 and 200 GeV. The photons are measured in the region -3.7 < \eta < -2.3 using the photon multiplicity detector in the STAR experiment at RHIC. The number of photons produced per average number of participating nucleon pairs increases with the beam energy and is independent of the collision centrality. For collisions with similar average numbers of participating nucleons the photon multiplicities are observed to be similar for Au+Au and Cu+Cu collisions at a given beam energy. The ratios of the number of charged particles to photons in the measured pseudorapidity range are found to be 1.4 +/- 0.1 and 1.2 +/- 0.1 for \sqrt{s_NN} = 62.4 GeV and 200 GeV, respectively. The energy dependence of this ratio could reflect varying contributions from baryons to charged particles, while mesons are the dominant contributors to photon production in the given kinematic region. The photon pseudorapidity distributions normalized by average number of participating nucleon pairs, when plotted as a function of \eta - ybeam, are found to follow a longitudinal scaling independent of centrality and colliding ion species at both beam energies.

14 data tables match query

Fig. 1. (Color online.) Top panel: Photon reconstruction efficiency $\left(\epsilon_{\gamma}\right)$ (solid symbols) and purity of photon sample $\left(f_{\mathrm{p}}\right)$ (open symbols) for PMD as a function of pseudorapidity $(\eta)$ for minimum bias $\mathrm{Au}+\mathrm{Au}$ and $\mathrm{Cu}+\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=$ $200 \mathrm{GeV}$. Bottom panel: Comparison between estimated $\epsilon_{\gamma}$ and $f_{\mathrm{p}}$ for PMD as a function of $\eta$ for minimum bias $\mathrm{Au}+\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=62.4 \mathrm{GeV}$ using HIJING and AMPT models. The error bars on the AMPT data are statistical and those for HIJING are within the symbol size. NOTE: For points with invisible error bars, the point size was considered as an absolute upper limit for the uncertainty.

Fig. 1. (Color online.) Top panel: Photon reconstruction efficiency $\left(\epsilon_{\gamma}\right)$ (solid symbols) and purity of photon sample $\left(f_{\mathrm{p}}\right)$ (open symbols) for PMD as a function of pseudorapidity $(\eta)$ for minimum bias $\mathrm{Au}+\mathrm{Au}$ and $\mathrm{Cu}+\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=$ $200 \mathrm{GeV}$. Bottom panel: Comparison between estimated $\epsilon_{\gamma}$ and $f_{\mathrm{p}}$ for PMD as a function of $\eta$ for minimum bias $\mathrm{Au}+\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=62.4 \mathrm{GeV}$ using HIJING and AMPT models. The error bars on the AMPT data are statistical and those for HIJING are within the symbol size. NOTE: For points with invisible error bars, the point size was considered as an absolute upper limit for the uncertainty.

Fig. 2. (Color online.) Event-by-event photon multiplicity distributions (solid circles) for $\mathrm{Au}+\mathrm{Au}$ and $\mathrm{Cu}+\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=62.4$ and $200 \mathrm{GeV} .$ The distributions for top $0-5 \%$ central $\mathrm{Au}+$ Au collisions and top $0-10 \%$ central $\mathrm{Cu}+\mathrm{Cu}$ collisions are also shown (open circles). The photon multiplicity distributions for central collisions are observed to be Gaussian (solid line). Only statistical errors are shown. NOTE: For points with invisible error bars, the point size was considered as an absolute upper limit for the uncertainty.

More…

QCD studies with e+ e- annihilation data at 172-GeV to 189-GeV.

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 16 (2000) 185-210, 2000.
Inspire Record 513476 DOI 10.17182/hepdata.49000

We have studied hadronic events from e+e- annihilation data at centre-of-mass energies of sqrt{s}=172, 183 and 189 GeV. The total integrated luminosity of the three samples, measured with the OPAL detector, corresponds to 250 pb^-1. We present distributions of event shape variables, charged particle multiplicity and momentum, measured separately in the three data samples. From these we extract measurements of the strong coupling alpha_s, the mean charged particle multiplicity <nch> and the peak position xi_0 in the xi_p=ln(1/x_p) distribution. In general the data are described well by analytic QCD calculations and Monte Carlo models. Our measured values of alpha_s, <nch> and xi_0 are consistent with previous determinations at sqrt{s}=MZ.

20 data tables match query

Distribution of Thrust.

Distribution of Thrust Major.

Distribution of Thrust Minor.

More…

Multiplicity Distributions in $p \alpha$ and $\alpha \alpha$ Collisions in the {CERN} {ISR}

The Axial Field Spectrometer collaboration Akesson, T. ; Albrow, M.G. ; Almehed, S. ; et al.
Phys.Lett.B 119 (1982) 464, 1982.
Inspire Record 179518 DOI 10.17182/hepdata.6665

Measurements of charged particle multiplicity distributions in the central rapidity region in p-p and p-α, and α-α collisions are reported. They are better fitted to the “wounded nucleon” than to the “gluon string” model. The average transverse momenta, for all three reactions, are identical (and almost independent of multiplicity) up to very high multiplicities.

2 data tables match query

THE FIRST PP DATA IS AT 44 GEV, THE SECOND AT 63 GEV.

No description provided.


Hadron production in nucleon-nucleon collisions at 200-GeV/c: A Compilation

Gazdzicki, M. ; Hansen, O. ;
Nucl.Phys.A 528 (1991) 754-770, 1991.
Inspire Record 323125 DOI 10.17182/hepdata.36760

Data on stable hadron production in p + p and p + n interactions at 200 GeV/ c are reviewed. Methods to construct missing data in the p + p, p + n, and n + n interactions are derived from charge symmetry and charge, baryon and strangeness conservation, and used to yield nucleon-nucleon interaction results. These may be useful for evaluating nucleus-nucleus collision measurements in terms of enhancements and suppressions. Parameterizations of p t 2 and rapidity distributions are presented to provide yields in acceptance cuts for comparisons to nucleus-nucleus data. As an example the derived nucleon-nucleon multiplicities are reduced to the acceptances of the NA-35 CERN S + S experiment.

13 data tables match query

No description provided.

No description provided.

No description provided.

More…

Determination of alpha-s from hadronic event shapes measured on the Z0 resonance

The L3 collaboration Adrian, O. ; Aguilar-Benitez, M. ; Ahlen, S. ; et al.
Phys.Lett.B 284 (1992) 471-481, 1992.
Inspire Record 334951 DOI 10.17182/hepdata.29157

We present a study of the global event shape variables thrust and heavy jet mass, of energy-energy correlations and of jet multiplicities based on 250 000 hadronic Z 0 decays. The data are compared to new QCD calculations including resummation of leading and next-to-leading logarithms to all orders. We determine the strong coupling constant α s (91.2 GeV) = 0.125±0.003 (exp) ± 0.008 (theor). The first error is the experimental uncertainty. The second error is due to hadronization uncertainties and approximations in the calculations of the higher order corrections.

3 data tables match query

Measured EEC distribution corrected for detector effects and photon radiation. Errors are combined statistical and systematic uncertainties.

Measured average jet multiplicities for the K_PT algorithm. All numbers are corrected for detector effects and photon radiation. Errors are combined statistical and systematic uncertainties.

Value of strong coupling constant, alpha_s, determined from the data. First error is experimental, the second is theoretical.


Experimental properties of gluon and quark jets from a point source.

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Alexander, G. ; et al.
Eur.Phys.J.C 11 (1999) 217-238, 1999.
Inspire Record 496755 DOI 10.17182/hepdata.49193

Gluon jets are identified in hadronic Z0 decays as all the particles in a hemisphere opposite to a hemisphere containing two tagged quark jets. Gluon jets defined in this manner are equivalent to gluon jets produced from a color singlet point source and thus correspond to the definition employed for most theoretical calculations. In a separate stage of the analysis, we select quark jets in a manner to correspond to calculations, as the particles in hemispheres of flavor tagged light quark (uds) events. We present the distributions of rapidity, scaled energy, the logarithm of the momentum, and transverse momentum with respect to the jet axes, for charged particles in these gluon and quark jets. We also examine the charged particle multiplicity distributions of the jets in restricted intervals of rapidity. For soft particles at large transverse momentum, we observe the charged particle multiplicity ratio of gluon to quark jets to be 2.29 +- 0.09 +- 0.15 in agreement with the prediction that this ratio should approximately equal the ratio of QCD color factors, CA/CF = 2.25. The intervals used to define soft particles and large transverse momentum for this result, p<4 GeV/c and 0.8<p_t<3.0 GeV/c, are motivated by the predictions of the Herwig Monte Carlo multihadronic event generator. Additionally, our gluon jet data allow a sensitive test of the phenomenon of non-leading QCD terms known as color reconnection. We test the model of color reconnection implemented in the Ariadne Monte Carlo multihadronic event generator and find it to be disfavored by our data.

5 data tables match query

(C=GLUON) and (C=QUARK) stand for jets originated from gluon and any light quark (Q=u, d, s), correspondingly. The ratio of gluon to quark jets are evaluated for 40.1 GeV jet energy.

(C=GLUON) and (C=QUARK) stand for jets originated from gluon and any light quark (Q=u, d, s), correspondingly. The ratio of gluon to quark jets are evaluated for 40.1 GeV jet energy.

(C=GLUON) and (C=QUARK) stand for jets originated from gluon and any light quark (Q=u, d, s), correspondingly. The ratio of gluon to quark jets are evaluated for 40.1 GeV jet energy.

More…

Charged particle multiplicity in e+ e-interactions at s**(1/2) = 130-GeV

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 372 (1996) 172-180, 1996.
Inspire Record 415744 DOI 10.17182/hepdata.47831

From the data collected by DELPHI at LEP in autumn 1995, the multiplicity of charged particles at a hadronic energy of 130 GeV has been measured to be 〈 n ch 〉 = 23.84 ± 0.51 (stat) ± 0.52 (syst). When compared to lower energy data, the value measured is consistent with the evolution predicted by QCD with corrections at next-to-leading order, for a value α s (130 GeV) = 0.105 ± 0.003 (stat) ± 0.008 (syst).

1 data table match query

No description provided.


Measurement of multiplicity and momentum spectra in the current fragmentation region of the Breit frame at HERA

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Z.Phys.C 67 (1995) 93-108, 1995.
Inspire Record 392386 DOI 10.17182/hepdata.45051

Charged particle production has been measured in Deep Inelastic Scattering (DIS) events using the ZEUS detector over a large range of $Q~2$ from 10 to $1280 {\rm\ GeV}~2$. The evolution with $Q$ of the charged multiplicity and scaled momentum has been investigated in the current fragmentation region of the Breit frame. The data are used to study QCD \linebreak coherence effects in DIS and are compared with corresponding \eedata in order to test the universality of quark fragmentation.

16 data tables match query

Mean charged multiplicity in the current fragmentation region.

Mean charged multiplicity in the current fragmentation region.

Mean charged multiplicity in the current fragmentation region.

More…

Energy dependence of phi meson production in central Pb+Pb collisions at $\sqrt{s}_{NN}$ = 6 to 17 GeV

The NA49 collaboration Alt, C. ; Anticic, T. ; Baatar, B. ; et al.
Phys.Rev.C 78 (2008) 044907, 2008.
Inspire Record 787913 DOI 10.17182/hepdata.25063

Phi meson production is studied by the NA49 collaboration in central Pb+Pb collisions at 20A, 30A, 40A, 80A and 158A GeV beam energy. The data are compared to measurements at lower and higher energies and to microscopic and thermal models. The energy dependence of yields and spectral distributions is compatible with the assumption that partonic degrees of freedom set in at low SPS energies.

13 data tables match query

PHI transverse momentum spectra at incident energy 20 GeV/nucleon integrated over the rapidity range 0 to 1.8.

PHI transverse momentum spectra at incident energy 30 GeV/nucleon integrated over the rapidity range 0 to 1.8.

PHI transverse momentum spectra at incident energy 40 GeV/nucleon integrated over the rapidity range 0 to 1.5.

More…

Studies of hadronic event structure in e+ e- annihilation from 30-GeV to 209-GeV with the L3 detector

The L3 collaboration Achard, P. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Rept. 399 (2004) 71-174, 2004.
Inspire Record 652683 DOI 10.17182/hepdata.54900

In this Report, QCD results obtained from a study of hadronic event structure in high energy e^+e^- interactions with the L3 detector are presented. The operation of the LEP collider at many different collision energies from 91 GeV to 209 GeV offers a unique opportunity to test QCD by measuring the energy dependence of different observables. The main results concern the measurement of the strong coupling constant, \alpha_s, from hadronic event shapes and the study of effects of soft gluon coherence through charged particle multiplicity and momentum distributions.

68 data tables match query

Jet fractions using the JADE algorithm as a function of the jet resolution parameter YCUT at c.m. energy 130.1 GeV.

Jet fractions using the JADE algorithm as a function of the jet resolution parameter YCUT at c.m. energy 136.1 GeV.

Jet fractions using the JADE algorithm as a function of the jet resolution parameter YCUT at c.m. energy 161.3 GeV.

More…