Measurement of total and differential $W^+W^-$ production cross sections in proton-proton collisions at $\sqrt{s}=$ 8 TeV with the ATLAS detector and limits on anomalous triple-gauge-boson couplings

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 09 (2016) 029, 2016.
Inspire Record 1426515 DOI 10.17182/hepdata.76808

The production of $W$ boson pairs in proton-proton collisions at $\sqrt{s}=$ 8 TeV is studied using data corresponding to 20.3 fb$^{-1}$ of integrated luminosity collected by the ATLAS detector during 2012 at the CERN Large Hadron Collider. The $W$ bosons are reconstructed using their leptonic decays into electrons or muons and neutrinos. Events with reconstructed jets are not included in the candidate event sample. A total of 6636 $WW$ candidate events are observed. Measurements are performed in fiducial regions closely approximating the detector acceptance. The integrated measurement is corrected for all acceptance effects and for the $W$ branching fractions to leptons in order to obtain the total $WW$ production cross section, which is found to be 71.1$\pm1.1$(stat)$^{+5.7}_{-5.0}$(syst)$\pm1.4$ pb. This agrees with the next-to-next-to-leading-order Standard Model prediction of 63.2$^{+1.6}_{-1.4}$(scale)$\pm1.2$(PDF) pb. Fiducial differential cross sections are measured as a function of each of six kinematic variables. The distribution of the transverse momentum of the leading lepton is used to set limits on anomalous triple-gauge-boson couplings.

29 data tables match query

Measured production cross sections of WW production in the fiducial region for different final states corresponding to different W decay channels: both W's decaying into electrons or both decaying to muon. The cross sections are defined for direct decays of the W bosons into prompt electrons or muons, intermediate decays into tau leptons are disregarded. The electrons are required to be contained within abs(eta)<2.47 and to lie outside of 1.37 < abs(eta) < 1.53, muons are required to lie within abs(eta)<2.4. The leading and subleading leptons in the events are required to have a transverse momentum above 25 and 20 GeV respectively. The transverse momentum of the vectorial sum of the neutrinos in the event should be larger than 45 GeV (PT(C=SUM(NU))). The transverse momentum of the vectorial sum of the neutrinos multiplied by the sine of azimuthal difference between lepton and the vectorial sum of the neutrinos in the event should be larger than 45 GeV if the azimuthal difference between lepton and the vectorial sum of the neutrinos is smaller than PI/2. The invariant mass of the leptons should exceed 15 GeV. The absolute difference between the invariant mass of the leptons and the mass of the Z boson should be larger than 15 GeV. Particle-level jets are defined using the anti-kT algorithm with radius of 0.4. No jets above 25 GeV and within abs(eta)<4.5 are allowed in the event. Both, resonant and non-resonant WW production processes, are included in the cross sections.

Measured production cross section of WW production in the fiducial region in case one W boson decays into a prompt electron and the other one into a prompt muon. The cross section is defined for direct decays of the W bosons into prompt electrons or muons, intermediate decays into tau leptons are disregarded. The electrons are required to be contained within abs(eta)<2.47 and to lie outside of 1.37 < abs(eta) < 1.53, muons are required to lie within abs(eta)<2.4. The leading and subleading leptons in the events are required to have a transverse momentum above 25 and 20 GeV respectively. The transverse momentum of the vectorial sum of the neutrinos in the event should be larger than 20 GeV (PT(C=SUM(NU))). The transverse momentum of the vectorial sum of the neutrinos is multiplied by the sine of the azimuthal difference between lepton and the vectorial sum of the neutrinos if their azimuthal difference is smaller than PI/2. It is required to be larger than 15 GeV. The invariant mass of the leptons should exceed 10 GeV. Particle-level jets are defined using the anti-kT algorithm with radius of 0.4. No jets above 25 GeV and within abs(eta)<4.5 are allowed in the event. Both, resonant and non-resonant WW production processes, are included in the cross sections.

Measured total production cross sections of WW production in the total phase space. Both, resonant and non-resonant WW, production are considered as signal.

More…

Measurement of the 4l Cross Section at the Z Resonance and Determination of the Branching Fraction of Z->4l in pp Collisions at sqrt(s) = 7 and 8 TeV with ATLAS

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.Lett. 112 (2014) 231806, 2014.
Inspire Record 1286892 DOI 10.17182/hepdata.64611

Measurements of four-lepton (4$\ell$, $\ell=e,\mu$) production cross sections at the $Z$ resonance in $pp$ collisions at the LHC with the ATLAS detector are presented. For dilepton and four-lepton invariant mass region $m_{\ell^+\ell^-} > 5$ GeV and $80 < m_{4\ell} < 100$ GeV, the measured cross sections are $76 \pm 18 \text { (stat) } \pm 4 \text { (syst) } \pm 1.4 \text { (lumi) }$ fb and $107 \pm 9 \text{ (stat) } \pm 4 \text{ (syst) } \pm 3.0 \text { (lumi) }$ fb at $\sqrt s$ = 7 and 8 TeV, respectively. By subtracting the non-resonant 4$\ell$ production contributions and normalizing with $Z\rightarrow \mu^+\mu^-$ events, the branching fraction for the $Z$ boson decay to $4\ell$ is determined to be $\left( 3.20 \pm 0.25\text{ (stat)} \pm 0.13\text{ (syst)} \right) \times 10^{-6}$, consistent with the Standard Model prediction.

6 data tables match query

The measured individual cross sections in the fiducial region and the combined cross sections for 4-muon and 4-electron final states at a centre-of-collision energy of 7 TeV.

The measured individual cross sections in the fiducial region and the combined cross sections for 2-muon-2-electron final states at a centre-of-collision energy of 7 TeV.

The measured cross section for four-lepton final states at a centre-of-collision energy of 7 TeV.

More…

Measurement of exclusive $\gamma\gamma\rightarrow W^+W^-$ production and search for exclusive Higgs boson production in $pp$ collisions at $\sqrt{s} = 8$ TeV using the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 94 (2016) 032011, 2016.
Inspire Record 1475477 DOI 10.17182/hepdata.79951

Searches for exclusively produced $W$ boson pairs in the process $pp(\gamma\gamma) \rightarrow pW^+W^-p$ and exclusively produced Higgs boson in the process $pp(gg) \rightarrow pHp$ have been performed using $e^{\pm}\mu^{\mp}$ final states. These measurements use 20.2 fb$^{-1}$ of $pp$ collisions collected by the ATLAS experiment at a center-of-mass energy $\sqrt{s}=8$ TeV at the LHC. Exclusive production of $W^+W^-$ consistent with the Standard Model prediction is found with 3.0$\sigma$ significance. The exclusive $W^+W^-$ production cross-section is determined to be $\sigma (\gamma\gamma\rightarrow W^{+}W^{-}\rightarrow e^{\pm}\mu^{\mp} X) = 6.9 \pm 2.2 (\mathrm{stat.}) \pm 1.4 (\mathrm{sys.})$ fb, in agreement with the Standard Model prediction. Limits on anomalous quartic gauge couplings are set at 95\% confidence-level as $-1.7 \times 10^{-6} < a_0^W/\Lambda^2 < 1.7 \times 10^{-6}$ GeV$^{-2}$and $-6.4 \times 10^{-6} < a_C^W/\Lambda^2 < 6.3 \times 10^{-6}$ GeV$^{-2}$. A 95\% confidence-level upper limit on the total production cross-section for exclusive Higgs boson is set to 1.2 pb.

5 data tables match query

Observed allowed ranges for 6 dimensional aQGCs, cutoff 500 GeV.

Expected allowed ranges for 6 dimensional aQGCs, no cutoff).

Observed allowed ranges for 8 dimensional aQGCs, cutoff 500).

More…

Search for direct pair production of a chargino and a neutralino decaying to the 125 GeV Higgs boson in $\sqrt{s}$ = 8 TeV pp collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 75 (2015) 208, 2015.
Inspire Record 1341609 DOI 10.17182/hepdata.68405

A search is presented for the direct pair production of a chargino and a neutralino $pp\to\tilde{\chi}^\pm_1\tilde{\chi}^0_2$, where the chargino decays to the lightest neutralino and the $W$ boson, $\tilde{\chi}^\pm_1 \to \tilde{\chi}^0_1 (W^{\pm}\to\ell^{\pm}\nu)$, while the neutralino decays to the lightest neutralino and the 125 GeV Higgs boson, $\tilde{\chi}^0_2 \to \tilde{\chi}^0_1 (h\to bb/\gamma\gamma/\ell^{\pm}\nu qq)$. The final states considered for the search have large missing transverse momentum, an isolated electron or muon, and one of the following: either two jets identified as originating from bottom quarks, or two photons, or a second electron or muon with the same electric charge. The analysis is based on 20.3 fb$^{-1}$ of $\sqrt{s}=8$ TeV proton-proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with the Standard Model expectations, and limits are set in the context of a simplified supersymmetric model.

62 data tables match query

Distribution of contransverse mass $m_{\rm CT}$ in CRlbb-T, central $m_{bb}$ bin. The background histograms are obtained from the background-only fit, and their uncertainty represents the total background uncertainty after the fit. The last bin includes overflow.

Distribution of contransverse mass $m_{\rm CT}$ in SRlbb-1 and SRlbb-2, $m_{bb}$ sideband. The background histograms are obtained from the background-only fit, and their uncertainty represents the total background uncertainty after the fit. The last bin includes overflow.

Distribution of the transverse mass of the $W$-candidate $m_{\rm T}^{W}$ for the one lepton and two $b$-jets channel in VRlbb-2, central $m_{bb}$ bin. The background histograms are obtained from the background-only fit, and their uncertainty represents the total background uncertainty after the fit. The last bin includes overflow.

More…

Measurement of $W$ boson angular distributions in events with high transverse momentum jets at $\sqrt{s}=$ 8 TeV using the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 765 (2017) 132-153, 2017.
Inspire Record 1487726 DOI 10.17182/hepdata.74701

The $W$ boson angular distribution in events with high transverse momentum jets is measured using data collected by the ATLAS experiment from proton-proton collisions at a centre-of-mass energy $\sqrt{s}=$ 8 TeV at the Large Hadron Collider, corresponding to an integrated luminosity of 20.3 fb$^{-1}$. The focus is on the contributions to $W$ + jets processes from real $W$ emission, which is achieved by studying events where a muon is observed close to a high transverse momentum jet. At small angular separations, these contributions are expected to be large. Various theoretical models of this process are compared to the data in terms of the absolute cross-section and the angular distributions of the muon from the leptonic $W$ decay.

5 data tables match query

Measured integrated cross-sections as a function of leading jet transverse momentum for the collinear region ($0.2 < \Delta R < 2.4$), the back-to-back region ($\Delta R > 2.4$) and inclusively.

Measured cross-section as a function of angular separation between the muon and the closest jet. Multiplicative correction factors for using prompt muons and prompt dressing photons in the particle-level selection, derived from ALPGEN 2.14 interfaced with PYTHIA 6.426, are also shown.

Breakdown of uncertainties in percent.

More…

Evidence of $W\gamma\gamma$ production in $pp$ collisions at $\sqrt{s}=8$ TeV and limits on anomalous quartic gauge couplings with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.Lett. 115 (2015) 031802, 2015.
Inspire Record 1351760 DOI 10.17182/hepdata.45260

This Letter reports evidence of triple gauge boson production $pp\to W(\ell\nu)\gamma\gamma + X$, which is accessible for the first time with the 8 TeV LHC data set. The fiducial cross section for this process is measured in a data sample corresponding to an integrated luminosity of 20.3 fb$^{-1}$, collected by the ATLAS detector in 2012. Events are selected using the $W$ boson decay to $e\nu$ or $\mu\nu$ as well as requiring two isolated photons. The measured cross section is used to set limits on anomalous quartic gauge couplings in the high diphoton mass region.

3 data tables match query

The measured inclusive ($N_{jet}\geq$ 0) fiducial cross section in the e$\nu\gamma\gamma$, $\mu\nu\gamma\gamma$ channels together with the combined $\ell\nu\gamma\gamma$ cross section. The first uncertainty shown is the statistical uncertainty on the measurement, the second one is the total systematic uncertainty (excluding the term coming from the luminosity), the third one is the systematic uncertainty coming from the luminosity. A parton to particle correction factors of 0.99 is applied to the MCFM prediction.

The measured exclusive ($N_{jet}$ = 0) fiducial cross section in the e$\nu\gamma\gamma$, $\mu\nu\gamma\gamma$ channels together with the combined $\ell\nu\gamma\gamma$ cross section. The first uncertainty shown is the statistical uncertainty on the measurement, the second one is the total systematic uncertainty (excluding the term coming from the luminosity), the third one is the systematic uncertainty coming from the luminosity. A parton to particle correction factor of 0.87 is applied to the MCFM prediction.

Observed and expected 95\% CL limits obtained for the $f_{\mathrm{T0}}/\Lambda^4$, $f_{\mathrm{M2}}/\Lambda^4$ and $f_{\mathrm{M3}}/\Lambda^4$ aQGC parameters for the combination of the two channels. The values of $n = 0,\,1,\,2$ are the exponential choices of the form factor, $\Lambda_{\rm{FF}}$ is fixed to $600$ GeV for $f_{\mathrm{T0}}/\Lambda^4$ and to $500$ GeV for the other parameters. The $n=0$ choice produces the limits without the form factor applied.


Measurement of the cross-section and charge asymmetry of $W$ bosons produced in proton-proton collisions at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 79 (2019) 760, 2019.
Inspire Record 1729240 DOI 10.17182/hepdata.89322

This paper presents measurements of the $W^+ \rightarrow \mu^+\nu$ and $W^- \rightarrow \mu^-\nu$ cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of $20.2~\mbox{fb$^{-1}$}$. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.

8 data tables match query

The correction factors, $C_{W^±,i}$ with their associated systematic uncertainties as a function of $|\eta_{\mu}|$, for $W^+$ and $W^−$

The integrated global correction factor $C_{W^±}$, for $W^+$ and $W^−$

Cross-sections (differential in $\eta_{\mu}$) and asymmetry, as a function of $|\eta_{\mu}|$). The central values are provided along with the statistical and dominant systematic uncertainties: the data statistical uncertainty (Data Stat.), the $E_T^{\textrm{miss}}$ uncertainty, the uncertainties related to muon reconstruction (Muon Reco.), those related to the background, those from MC statistics (MC Stat.), and modelling uncertainties. The uncertainties of the cross-sections are given in percent and those of the asymmetry as an absolute difference from the nominal.

More…

Measurement of the inclusive cross-section for the production of jets in association with a Z boson in proton-proton collisions at 8 TeV using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 79 (2019) 847, 2019.
Inspire Record 1744201 DOI 10.17182/hepdata.90953

The inclusive cross-section for jet production in association with a Z boson decaying into an electron-positron pair is measured as a function of the transverse momentum and the absolute rapidity of jets using 19.9 fb$^{-1}$ of $\sqrt s = 8$ TeV proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider. The measured Z + jets cross-section is unfolded to the particle level. The cross-section is compared with state-of-the-art Standard Model calculations, including the next-to-leading-order and next-to-next-to-leading-order perturbative QCD calculations, corrected for non-perturbative and QED radiation effects. The results of the measurements cover final-state jets with transverse momenta up to 1 TeV, and show good agreement with fixed-order calculations.

20 data tables match query

List of experimentally considered systematic uncertainties for the Z + jets cross-section measurement

The double-differential Z + jets production cross-section as a function of |y_{jet}| in the 25 GeV < p_{T}^{jet} < 50 GeV range. The particle level phase space definition: - 66 GeV < m_{ee} < 116 GeV - |eta_{electron}| < 2.47 - p_{T}^{electron} > 20 GeV - anti-kt R=0.4 jets N>=1 - |y_{jet}| < 3.4 - p_{T}^{jet} > 25 GeV - Delta R(jet, electron) > 0.4

The double-differential Z + jets production cross-section as a function of |y_{jet}| in the 50 GeV < p_{T}^{jet} < 100 GeV range. The particle level phase space definition: - 66 GeV < m_{ee} < 116 GeV - |eta_{electron}| < 2.47 - p_{T}^{electron} > 20 GeV - anti-kt R=0.4 jets N>=1 - |y_{jet}| < 3.4 - p_{T}^{jet} > 25 GeV - Delta R(jet, electron) > 0.4

More…

Measurement of the total cross section from elastic scattering in $pp$ collisions at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 761 (2016) 158-178, 2016.
Inspire Record 1477585 DOI 10.17182/hepdata.73997

A measurement of the total $pp$ cross section at the LHC at $\sqrt{s}=8$ TeV is presented. An integrated luminosity of $500$ $\mu$b$^{-1}$ was accumulated in a special run with high-$\beta^{\star}$ beam optics to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable $t$. The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the $-t$ range from $0.014$ GeV$^2$ to $0.1$ GeV$^2$ to extrapolate $t\rightarrow 0$, the total cross section, $\sigma_{\mathrm{tot}}(pp\rightarrow X)$, is measured via the optical theorem to be: $\sigma_{\mathrm{tot}}(pp\rightarrow X) = {96.07} \; \pm 0.18 \; ({{stat.}}) \pm 0.85 \; ({{exp.}}) \pm 0.31 \; ({extr.}) \; {mb} \;,$ where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation $t\rightarrow 0$. In addition, the slope of the exponential function describing the elastic cross section at small $t$ is determined to be $B = 19.74 \pm 0.05 \; ({{stat.}}) \pm 0.23 \; ({{syst.}}) \; {GeV}^{-2}$.

6 data tables match query

The measured total cross section, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.

The nuclear slope of the differential eslastic cross section at small |t|, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.

The total elastic cross section and the observed elastic cross section within the fiducial volume.

More…

Measurement of $W^+W^-$ production in association with one jet in proton--proton collisions at $\sqrt{s} =8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 763 (2016) 114-133, 2016.
Inspire Record 1480365 DOI 10.17182/hepdata.79950

The production of $W$ boson pairs in association with one jet in $pp$ collisions at $\sqrt{s} = 8$ TeV is studied using data corresponding to an integrated luminosity of 20.3 fb$^{-1}$ collected by the ATLAS detector during 2012 at the CERN Large Hadron Collider. The cross section is measured in a fiducial phase-space region defined by the presence of exactly one electron and one muon, missing transverse momentum and exactly one jet with a transverse momentum above 25 GeV and a pseudorapidity of $|\eta|<4.5$. The leptons are required to have opposite electric charge and to pass transverse momentum and pseudorapidity requirements. The fiducial cross section is found to be $\sigma^{\mathrm{fid,1\textrm{-}jet}}_{WW}=136\pm6($stat$)\pm14($syst$)\pm3($lumi$)$ fb. In combination with a previous measurement restricted to leptonic final states with no associated jets, the fiducial cross section of $WW$ production with zero or one jet is measured to be $\sigma^{\mathrm{fid,}\leq\mathrm{1\textrm{-}jet}}_{WW}=511\pm9($stat$)\pm26($syst$)\pm10($lumi$)$ fb. The ratio of fiducial cross sections in final states with one and zero jets is determined to be $0.36\pm0.05$. Finally, a total cross section extrapolated from the fiducial measurement of $WW$ production with zero or one associated jet is reported. The measurements are compared to theoretical predictions and found in good agreement.

4 data tables match query

Measured production cross section of WW production in the fiducial region in case one W boson decays into a prompt electron and the other one into a prompt muon. The cross section is defined for direct decays of the W bosons into prompt electrons or muons, intermediate decays into tau leptons are disregarded. The electrons are required to be contained within abs(eta)<2.47 and to lie outside of 1.37 < abs(eta) < 1.53, muons are required to lie within abs(eta)<2.4. The leading and subleading leptons in the events are required to have a transverse momentum above 25 and 20 GeV respectively. The transverse momentum of the vectorial sum of the neutrinos in the event should be larger than 20 GeV (PT(C=SUM(NU))). The transverse momentum of the vectorial sum of the neutrinos is multiplied by the sine of the azimuthal difference between lepton and the vectorial sum of the neutrinos if their azimuthal difference is smaller than PI/2. It is required to be larger than 15 GeV. The invariant mass of the leptons should exceed 10 GeV. Particle-level jets are defined using the anti-kT algorithm with radius of 0.4. Only events with exactly one jet above 25 GeV and within abs(eta)<4.5 are selected. Events containing b-jets with p T > 20 GeV and within |η| < 2.5 are rejected. Both, resonant and non-resonant WW production processes, are included in the cross sections.

Measured production cross section of WW production in the fiducial region in case one W boson decays into a prompt electron and the other one into a prompt muon. The cross section is defined for direct decays of the W bosons into prompt electrons or muons, intermediate decays into tau leptons are disregarded. The electrons are required to be contained within abs(eta)<2.47 and to lie outside of 1.37 < abs(eta) < 1.53, muons are required to lie within abs(eta)<2.4. The leading and subleading leptons in the events are required to have a transverse momentum above 25 and 20 GeV respectively. The transverse momentum of the vectorial sum of the neutrinos in the event should be larger than 20 GeV (PT(C=SUM(NU))). The transverse momentum of the vectorial sum of the neutrinos is multiplied by the sine of the azimuthal difference between lepton and the vectorial sum of the neutrinos if their azimuthal difference is smaller than PI/2. It is required to be larger than 15 GeV. The invariant mass of the leptons should exceed 10 GeV. Particle-level jets are defined using the anti-kT algorithm with radius of 0.4. Only events with zero or exactly one jet above 25 GeV and within abs(eta)<4.5 are selected. Events containing b-jets with p T > 20 GeV and within |η| < 2.5 are rejected. Both, resonant and non-resonant WW production processes, are included in the cross sections.

Measured ratio of the production cross section of WW production with one associated jet to the production cross section of WW production with zero associated jets. The ratio is determined in the in the fiducial region which is defined in case one W boson decays into a prompt electron and the other one into a prompt muon. The cross section is defined for direct decays of the W bosons into prompt electrons or muons, intermediate decays into tau leptons are disregarded. The electrons are required to be contained within abs(eta)<2.47 and to lie outside of 1.37 < abs(eta) < 1.53, muons are required to lie within abs(eta)<2.4. The leading and subleading leptons in the events are required to have a transverse momentum above 25 and 20 GeV respectively. The transverse momentum of the vectorial sum of the neutrinos in the event should be larger than 20 GeV (PT(C=SUM(NU))). The transverse momentum of the vectorial sum of the neutrinos is multiplied by the sine of the azimuthal difference between lepton and the vectorial sum of the neutrinos if their azimuthal difference is smaller than PI/2. It is required to be larger than 15 GeV. The invariant mass of the leptons should exceed 10 GeV. Particle-level jets are defined using the anti-kT algorithm with radius of 0.4. Only events with zero or exactly one jet above 25 GeV and within abs(eta)<4.5 are selected. Events containing b-jets with p T > 20 GeV and within |η| < 2.5 are rejected. Both, resonant and non-resonant WW production processes, are included in the cross sections.

More…