Precise Determination of Sin**2-$\theta^-$w From Measurements of the Differential Cross-sections for $\nu_\mu p \to \nu_\mu p$ and $\bar{\nu}_\mu p \to \bar{\nu}_\mu p$

Ahrens, L.A. ; Aronson, S.H. ; Connolly, P.L. ; et al.
Phys.Rev.Lett. 56 (1986) 1107, 1986.
Inspire Record 218044 DOI 10.17182/hepdata.20261

This paper describes measurements of the semileptonic weak-neutral-current reactions νpμ→νpμ and ν¯pμ→ν¯pμ which yield the absolute differential cross sections dσ(νpμ)dQ2 and dσ(ν¯pμ)dQ2. The weak-neutral-current parameter, sin2θW, is determined to be sin2θW=0.220±0.016(stat.)(syst.)−0.031+0.023.

3 data tables match query

No description provided.

No description provided.

No description provided.


MEASUREMENT OF THE muon-neutrino CHARGED CURRENT CROSS-SECTION

Baker, N.J. ; Connolly, P.L. ; Kahn, S.A. ; et al.
Phys.Rev.Lett. 51 (1983) 735-738, 1983.
Inspire Record 183068 DOI 10.17182/hepdata.20488

The Fermilab 15-ft bubble chamber, filled with a heavy neon-hydrogen mix, was exposed to a narrow-band νμ beam. Based on the observation of 830 charged-current νμ interactions, the cross section was found consistent with a linear rise with the neutrino energy in the interval 10 GeV<~Eν≲240 GeV. The average slope was determined to be σνEν=(0.62±0.05)×10−38 cm2 GeV−1.

2 data tables match query

Measured charged current total cross section.

No description provided.


Total Cross-sections for Muon-neutrino $N$ and Muon-neutrino $P$ Charged Current Interactions in the 7-ft Bubble Chamber

Baker, N.J. ; Connolly, P.L. ; Kahn, S.A. ; et al.
Phys.Rev.D 25 (1982) 617-623, 1982.
Inspire Record 177607 DOI 10.17182/hepdata.23972

The total cross sections for νμn and νμp charged-current interactions and their ratio R=σT(νn)σT(νp) have been measured as a function of neutrino energy from 0.4 to 10 GeV. The experiment is performed using the BNL 7-foot deuterium bubble chamber exposed to the Alternating Gradient Synchrotron wide-band neutrino beam. The absolute values of the cross sections are normalized to the quasielastic scattering (νμn→μ−p) cross section. Above 1.6 GeV the data are consistent with the quark-parton model. We find that σT(νn)Eν=(1.07±0.05)×10−38, σT(νp)Eν=(0.54±0.04)×10−38, and σT(νN)Eν=(0.80±0.03)×10−38 cm2/GeV for 〈Eν〉=3.2 GeV, and R=1.95±0.10 for 〈Eν〉=3.7 GeV.

5 data tables match query

Axis error includes +- 0.0/0.0 contribution (?////SYSTEMATIC ERROR NOT GIVENNEUTRAL CURRENT AND NEUTRAL PARTICLES INDUCED REACTIONS, RESCATTERING IN DEUTERIUM).

No description provided.

No description provided.

More…

A Measurement of Muon Neutrino Electron Elastic Scattering in the {Fermilab} 15-foot Bubble Chamber

Baker, N.J. ; Connolly, P.L. ; Kahn, S.A. ; et al.
Phys.Rev.D 40 (1989) 2753, 1989.
Inspire Record 281020 DOI 10.17182/hepdata.23078

A total of 22 muon-neutrino-electron elastic-scattering events (νμe→νμe) have been observed in an exposure of the Fermilab 15-foot bubble chamber filled with a heavy neon-hydrogen mixture to a wide-band neutrino beam. The elastic-scattering cross section is measured to be 1.67±0.44×10−42Eν cm2 GeV−1. The value of the weak mixing angle (sin2θW) determined from this cross section, which is consistent with other measurements of this angle, is 0.20−0.05+0.06.

1 data table match query

No description provided.


Determination of electroweak parameters from the elastic scattering of muon-neutrinos and anti-neutrinos on electrons

Ahrens, L.A. ; Aronson, S.H. ; Connolly, P.L. ; et al.
Phys.Rev.D 41 (1990) 3297-3316, 1990.
Inspire Record 306084 DOI 10.17182/hepdata.22936

Total and differential cross sections for νμe→νμe and ν¯μe→ν¯μe are measured. Values for the model-independent neutral-current couplings of the electron are found to be gV=−0.107±0.035(stat)±0.028(syst) and gA=−0.514±0.023(stat)±0.028(syst). The electroweak mixing parameter sin2θW is determined to be 0.195±0.018(stat)±0.013(syst). Limits are set for the charge radius and magnetic moment of the neutrino as (〈r2〉)<0.24×10−32 cm2 and fμ<0.85×10−9 Bohr magnetons, respectively.

3 data tables match query

No description provided.

No description provided.

No description provided.


Quasielastic Neutrino Scattering: A Measurement of the Weak Nucleon Axial Vector Form-Factor

Baker, N.J. ; Cnops, A.M. ; Connolly, P.L. ; et al.
Phys.Rev.D 23 (1981) 2499-2505, 1981.
Inspire Record 170354 DOI 10.17182/hepdata.24080

The quasielastic reaction νμn→μ−p was studied in an experiment using the BNL 7-foot deuterium bubble chamber exposed to the wide-band neutrino beam with an average energy of 1.6 GeV. A total of 1138 quasielastic events in the momentum-transfer range Q2=0.06−3.00 (GeV/c)2 were selected by kinematic fitting and particle identification and were used to extract the axial-vector form factor FA(Q2) from the Q2 distribution. In the framework of the conventional V−A theory, we find that the dipole parametrization is favored over the monopole. The value of the axial-vector mass MA in the dipole parametrization is 1.07±0.06 GeV, which is in good agreement with both recent neutrino and electroproduction experiments. In addition, the standard assumptions of conserved vector current and no second-class currents are checked.

1 data table match query

Measured Quasi-Elastic total cross section.


Confirmation of the Existence of the Sigma(c)++ and Lambda(c)+ Charmed Baryons

Baltay, C. ; Caroumbalis, D. ; French, H. ; et al.
Phys.Rev.Lett. 42 (1979) 1721, 1979.
Inspire Record 140761 DOI 10.17182/hepdata.50280

In a broadband neutrino exposure of the Fermilab 15-ft bubble chamber, we observe the production of the Σc++(2426) charmed baryon followed by its decay to Λc+(2260) and π+. We find the mass of the Λc+ to be 2257±10 MeV and the m(Σc++)−m(Λc+) mass difference to be 168±3 MeV. Previously unseen two-body decay modes of the Λc+(2260) are observed.

0 data tables match query

Experimental Limits on Heavy Lepton Production by Neutrinos

Cnops, A.M. ; Connolly, P.L. ; Kahn, S.A. ; et al.
Phys.Rev.Lett. 40 (1978) 144-146, 1978.
Inspire Record 121918 DOI 10.17182/hepdata.37905

We present upper limits on the production of heavy leptons (L±) by neutrinos via the process νμ+Ne→L±+⋯, L±→e±+ν+ν¯. These limits imply that the L− and L+, if they couple in full strength to νμ, are heavier than 7.5 and 9 GeV, respectively. They also imply that the coupling strength νμ to the recently discovered 1.9-GeV heavy lepton τ is less than 0.025 of the normal νμ−μ coupling.

0 data tables match query

MEASUREMENT OF THE BJORKEN X AND Y DISTRIBUTIONS IN NEUTRAL AND CHARGED CURRENT muon-neutrino INTERACTIONS

Baltay, C. ; Bregman, M. ; Caroumbalis, D. ; et al.
Phys.Rev.Lett. 52 (1984) 1948-1951, 1984.
Inspire Record 205295 DOI 10.17182/hepdata.20446

Distributions of the Bjorken scaling variables x and y, and the structure function F+(x), are presented both for neutral-current and for charged-current νμ interactions. The data were obtained by use of the Fermilab 15-ft neon bubble chamber exposed to a narrow-band νμ beam. Results are based on 151 neutral-current and 683 charged-current events. An important feature of the neutral-current analysis is the event-by-event reconstruction of the outgoing neutrino.

0 data tables match query

Measurement of the t anti-t production cross-section in p anti-p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Affolder, T. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.D 64 (2001) 032002, 2001.
Inspire Record 552302 DOI 10.17182/hepdata.42935

We update the measurement of the top production cross section using the CDF detector at the Fermilab Tevatron. This measurement uses $t\bar{t}$ decays to the final states $e+\nu$+jets and $\mu+\nu$+jets. We search for $b$ quarks from $t$ decays via secondary-vertex identification or the identification of semileptonic decays of the $b$ and cascade $c$ quarks. The background to the $t\bar{t}$ production is determined primarily through a Monte Carlo simulation. However, we calibrate the simulation and evaluate its uncertainty using several independent data samples. For a top mass of 175 $GeV/c^2$, we measure $\sigma_{t\bar{t}}=5.1 \pm 1.5$ pb and $\sigma_{t\bar{t}}=9.2 \pm 4.3$ pb using the secondary vertex and the lepton tagging algorithms, respectively. Finally, we combine these results with those from other $t\bar{t}$ decay channels and obtain $\sigma_{t\bar{t}} = 6.5^{+1.7}_{-1.4}$ pb.

1 data table match query

Cross sections from the SVX (secondary vertex), SLT (soft lepton tag), dilepton and all hadronic analyses. See text of article for details. Errors contain both statistics and systematics.