Identified Charged Particles in Quark and Gluon Jets

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 17 (2000) 207-222, 2000.
Inspire Record 524696 DOI 10.17182/hepdata.50064

A sample of 2.2 million hadronic Z decays, selected from the data recorded by the Delphi detector at LEP during 1994-1995 was used for an improved measurement of inclusive distributions of pi+, K+ and p and their antiparticles in gluon and quark jets. The production spectra of the individual identified particles were found to be softer in gluon jets compared to quark jets, with a higher multiplicity in gluon jets as observed for inclusive charged particles. A significant proton enhancement in gluon jets is observed indicating that baryon production proceeds directly from colour objects. The maxima, xi^*, of the xi-distributions for kaons in gluon and quark jets are observed to be different.

11 data tables match query

Jet flavor tagging is used. (C=DUSCB), (C=DUSC), (C=UDS) mean quark-jet flavors. CONST(C=GLUON/JET) is the ratio gluon/jet for all charged particles. 'Y' events, mirror symmetric events, the angle between the most energetic jet and other two jets is 150 +- 15 deg.

Jet flavor tagging is used. (C=DUSCB), (C=DUSC), (C=UDS) mean quark-jet flavors. CONST(C=GLUON/JET) is the ratio gluon/jet for all charged particles. 'Y' events, mirror symmetric events, the angle between the most energetic jet and other two jets is 150 +- 15 deg.

Jet flavor tagging is used. (C=DUSCB), (C=DUSC), (C=UDS) mean quark-jet flavors. CONST(C=GLUON/JET) is the ratio gluon/jet for all charged particles. 'Y' events, mirror symmetric events, the angle between the most energetic jet and other two jets is 150 +- 15 deg.

More…

Inclusive Sigma- and Lambda(1520) production in hadronic Z decays.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 475 (2000) 429-447, 2000.
Inspire Record 524694 DOI 10.17182/hepdata.49984

Production of Sigma- and Lambda(1520) in hadronic Z decays has been measured using the DELPHI detector at LEP. The Sigma- is directly reconstructed as a charged track in the DELPHI microvertex detector and is identified by its Sigma -> n pi decay leading to a kink between the Sigma- and pi-track. The reconstruction of the Lambda(1520) resonance relies strongly on the particle identification capabilities of the barrel Ring Imaging Cherenkov detector and on the ionisation loss measurement of the TPC. Inclusive production spectra are measured for both particles. The production rates are measured to be <N_{Sigma-}/N_{Z}^{had}> = 0.081 +/- 0.002 +/- 0.010, <N_{Lambda(1520)}/N_{Z}^{had}> = 0.029 +/- 0.005 +/- 0.005. The production rate of the Lambda(1520) suggests that a large fraction of the stable baryons descend from orbitally excited baryonic states. It is shown that the baryon production rates in Z decays follow a universal phenomenological law related to isospin, strangeness and mass of the particles.

4 data tables match query

The measured differential cross section for SIGMA- production.

The total production rate of SIGMA-. The second systematic (DSYS) error is due to the extrapolation to the fullx-range.

The measured differential cross section for LAMBDA(1520) production. The first error is the fit error.

More…

Consistent measurements of alpha(s) from precise oriented event shape distributions.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 14 (2000) 557-584, 2000.
Inspire Record 522656 DOI 10.17182/hepdata.13245

An updated analysis using about 1.5 million events recorded at $\sqrt{s} = M_Z$ with the DELPHI detector in 1994 is presented. Eighteen infrared and collinear safe event shape observables are measured as a function of the polar angle of the thrust axis. The data are compared to theoretical calculations in ${\cal O} (\alpha_s^2)$ including the event orientation. A combined fit of $\alpha_s$ and of the renormalization scale $x_{\mu}$ in $\cal O(\alpha_s^2$) yields an excellent description of the high statistics data. The weighted average from 18 observables including quark mass effects and correlations is $\alpha_s(M_Z^2) = 0.1174 \pm 0.0026$. The final result, derived from the jet cone energy fraction, the observable with the smallest theoretical and experimental uncertainty, is $\alpha_s(M_Z^2) = 0.1180 \pm 0.0006 (exp.) \pm 0.0013 (hadr.) \pm 0.0008 (scale) \pm 0.0007 (mass)$. Further studies include an $\alpha_s$ determination using theoretical predictions in the next-to-leading log approximation (NLLA), matched NLLA and $\cal O(\alpha_s^2$) predictions as well as theoretically motivated optimized scale setting methods. The influence of higher order contributions was also investigated by using the method of Pad\'{e} approximants. Average $\alpha_s$ values derived from the different approaches are in good agreement.

33 data tables match query

The weighted value of ALPHA-S from all the measured observables using experimentally optimized renormalization scale values and corrected for the b-mass toleading order.

The value of ALPHA-S derived from the JCEF and corrected for heavy quark mass effects. The quoted errors are respectively due to experimental error, hadronization, renormalization scale and heavy quark mass correction uncertainties.

Energy Energy Correlation EEC.

More…

Measurement of the gluon fragmentation function and a comparison of the scaling violation in gluon and quark jets.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 13 (2000) 573-589, 2000.
Inspire Record 511099 DOI 10.17182/hepdata.49028

The fragmentation functions of quarks and gluons are measured in various three-jet topologies in Z decays from the full data set collected with the Delphi detector at the Z resonance between 1992 and

7 data tables match query

Charged hadron XE(=Z) distributions. Durham algorithm. XISTAR is peak position in XI=LOG(-XE) distribution.

Charged hadron XE(=Z) distributions. Durham algorithm. XISTAR is peak position in XI=LOG(-XE) distribution.

Charged hadron XE(=Z) distributions. Durham algorithm. XISTAR is peak position in XI=LOG(-XE) distribution.

More…

pi+-, K+-, p and anti-p production in Z0 --> q anti-q, Z0 --> b anti-b, Z0 --> u anti-u, d anti-d, s anti-s.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 5 (1998) 585-620, 1998.
Inspire Record 473409 DOI 10.17182/hepdata.49385

The DELPHI experiment at LEP uses Ring Imaging Cherenkov detectors for particle identification. The good understanding of the RICH detectors allows the identification of charged pions, kaons and proto

39 data tables match query

Mean particle multiplicities for Z0-->Q-QBAR events. The second systematic (DSYS) error is due to the extrapolation of the differential distributions to the full kinematic range.

Mean particle multiplicities for Z0-->B-BBAR events. The second systematic (DSYS) error is due to the extrapolation of the differential distributions to the full kinematic range.

Mean particle multiplicities for Z0-->(U-UBAR,D-DBAR,S-SBAR) events. The second systematic (DSYS) error is due to the extrapolation of the differential distributions to the full kinematic range.

More…

Investigation of the splitting of quark and gluon jets.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 4 (1998) 1-17, 1998.
Inspire Record 467927 DOI 10.17182/hepdata.49547

The splitting processes in identified quark and gluon jets are investigated using longitudinal and transverse observables. The jets are selected from symmetric three-jet events measured in Z decays with the Delphi detector in 1991-1994. Gluon jets are identified using heavy quark anti-tagging. Scaling violations in identified gluon jets are observed for the first time. The scale energy dependence of the gluon fragmentation function is found to be about two times larger than for the corresponding quark jets, consistent with the QCD expectation CA/CF. The primary splitting of gluons and quarks into subjets agrees with fragmentation models and, for specific regions of the jet resolution y, with NLLA calculations. The maximum of the ratio of the primary subjet splittings in quark and gluon jets is 2.77±0.11±0.10. Due to non-perturbative effects, the data are below the expectation at small y. The transition from the perturbative to the non-perturbative domain appears at smaller y for quark jets than for gluon jets. Combined with the observed behaviour of the higher rank splittings, this explains the relatively small multiplicity ratio between gluon and quark jets.

14 data tables match query

Scaled energy distribution of charged hadrons produced in Quark jets in 'Y'topology 3-JET events.

Scaled energy distribution of charged hadrons produced in Gluon jets in 'Y'topology 3-JET events.

Scaled energy distribution of charged hadrons produced in Quark jets in 'Mercedes' topology 3-JET events.

More…

Measurement of the quark and gluon fragmentation functions in Z0 hadronic decays.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 6 (1999) 19-33, 1999.
Inspire Record 448370 DOI 10.17182/hepdata.47405

The transverse, longitudinal and asymmetric components of the fragmentation function are measured from the inclusive charged particles produced in$e^+e^-$collisi

9 data tables match query

Transverse component of the differential cross section.

Longitudinal component of the differential cross section.

Asymmetric component of the differential cross section.

More…

Measurement of the spin density matrix for the rho0, K*(892)0 and Phi produced in Z0 decays.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 406 (1997) 271-286, 1997.
Inspire Record 444150 DOI 10.17182/hepdata.47452

The spin density matrix elements for the ϱ 0 , K ∗0 (892) and F produced in hadronic Z 0 decays are measured in the DELPHI detector. There is no evidence for spin alignment of the K ∗0 (892) and F in the region x p ≤ 0.3 ( x p = p p beam ), where ϱ 00 = 0.33 ± 0.05 and ϱ 00 = 0.30 ± 0.04, respectively. In the fragmentation region, x p ≥ 0.4, there is some indication for spin alignment of the ϱ 0 and K ∗0 (892), since ϱ 00 = 0.43 ± 0.05 and ϱ 00 = 0.46 ± 0.08, respectively. These values are compared with those found in meson-induced hadronic reactions. For the F, ϱ 00 = 0.30 ± 0.04 for x p ≥ 0.4 and 0.55 ± 0.10 for x p ≥ 0.7. The off-diagonal spin density matrix element ϱ 1-1 is consistent with zero in all cases.

3 data tables match query

Helicity density matrices elements. The statistical and systematic errors are combined quadratically.

Helicity density matrices elements. The statistical and systematic errors are combined quadratically.

Helicity density matrices elements. The statistical and systematic errors are combined quadratically.


Measurement of the multiplicity of gluons splitting to bottom quark pairs in hadronic Z0 decays.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 405 (1997) 202-214, 1997.
Inspire Record 442880 DOI 10.17182/hepdata.47486

An inclusive measurement of the average multiplicity of b b pairs from gluons, g b b , in hadronic Z 0 events collected by the DELPHI experiment at LEP, is presented. A counting technique, based on jet b -tagging in 4-jet events, has been used. Looking for secondary bottom production in events with production of any primary flavour, by requiring two b -tagged jets in well defined topological configurations, gave g b b = (0.21 ± 0.11 ( stat ) ± 0.09 ( syst ))% . This result was checked with a different method designed to select events with four b quarks in the final state. Agreement within the errors was found.

1 data table match query

No description provided.


Search for the B/c meson.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 398 (1997) 207-222, 1997.
Inspire Record 428162 DOI 10.17182/hepdata.47617

In a sample of 3.02 million hadronic Z 0 decays collected by the DELPHI detector, 270 J ψ → ℓ + ℓ − candidates have been selected. A search for fully reconstructed B c ± mesons has yielded one B c ± → J ψ π ± candidate, no B c ± → J ψ ℓ ± ν ℓ candidates, and one B c ± → J ψ , π + π − π ± candidate, consistent with expected background in each channel. The following 90% confidence level upper limits are determined: Br(Z 0 → B c ± X) × Br(B c ± → J ψ π ± ) < (1.05 to 0.84) × 10 −4 and Br(Z 0 → B c ± X) × Br(B c ± → J ψ ℓ ± ν ℓ ) < (5.8 to 5.0) × 10 −5 , where the ranges quoted correspond to the range of predicted B c ± lifetimes from 0.4 to 1.4 ps, and Br(Z 0 → B c ± X) × Br(B c ± → J ψ π + π − π ± ) < 1.75 × 10 −4 , constant over the range of predicted B c ± lifetimes.

1 data table match query

B/C life-time equals (0.4 to 1.4) ps.


A measurement of alpha(s) from the scaling violation in e+ e- annihilation.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 398 (1997) 194-206, 1997.
Inspire Record 428178 DOI 10.17182/hepdata.47581

The hadronic fragmentation functions of the various quark flavours and of gluons are measured in a study of the inclusive hadron production from Z 0 decays with the DELPHI detector and are compared with the fragmentation functions measured elsewhere at energies between 14 GeV and 91 GeV. A large scaling violation is observed, which is used to extract the strong coupling constant from a fit using a numerical integration of the second order DGLAP evolution equations. The result is α s ( M Z ) = 0.124 −0.007 +0.006 (exp) ± 0.009(theory) where the first error represents the experimental uncertainty and the second error is due to the factorization and renormalization scale dependence.

2 data tables match query

SIG(Q=BQ, Q=CQ, Q=UDS) corresponds to BQ, CQ, and U,D,S quarks fragmentation into charged hadron.

alpha_s was evaluated from the scaling violation of the fragmentation func tions. The data from other experiments are used for the fitting procedure.


Identified particles in quark and gluon jets.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 401 (1997) 118-130, 1997.
Inspire Record 428228 DOI 10.17182/hepdata.47615

A sample of about 1.4 million hadronic Z decays, selected among the data recorded by the DELPHI detector at LEP during 1994, was used to measure for the first time the momentum spectra of K + , K 0 , p , Λ and their antiparticles in gluon and quark jets. As observed for inclusive charged particles, the production spectra of identified particles were found to be softer in gluon jets than in quark jets, with a higher total multiplicity.

2 data tables match query

Y events.

Mercedes events.


Measurement of event shape and inclusive distributions at s**(1/2) = 130-GeV and 136-GeV.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 73 (1997) 229-242, 1997.
Inspire Record 424629 DOI 10.17182/hepdata.47715

Inclusive charged particle and event shape distributions are measured using 321 hadronic events collected with the DELPHI experiment at LEP at effective centre of mass energies of 130 to 136 GeV. These distributions are presented and compared to data at lower energies, in particular to the precise Z data. Fragmentation models describe the observed changes of the distributions well. The energy dependence of the means of the event shape variables can also be described using second order QCD plus power terms. A method independent of fragmentation model corrections is used to determine αs from the energy dependence of the mean thrust and heavy jet mass. It is measured to be: $$←pha _s(133 {⤪ GeV})={0.116}pm {0.007}_{exp-0.004theo}^{+0.005}$$ from the high energy data.

26 data tables match query

mean values for event shape variables.

Integral of event shape distribution over the specified interval.

Integral of event shape distribution over the specified interval.

More…

Measurement of inclusive K*(892)0, Phi(1020) and K*2(1430)0 production in hadronic Z decays.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 73 (1996) 61-72, 1996.
Inspire Record 420528 DOI 10.17182/hepdata.47565

The inclusive production of the neutral vector mesons K*0(892) and ϕ(1020), and of the tensor meson ${⤪ K}_{2}^{⇒t 0}(1430)$, in hadronic decays of the Z has been measured by the DELPHI detector at LEP. The average production rates per hadronic Z decay have been determined to be 0.77 ± 0.08 K*0(892), 0.104 ± 0.008 ϕ(1020) and ${⤪ K}_{2}^{⇒t 0}(1430)$. The ratio of the tensor-to-vector meson production yields, $«ngle {⤪ K}_{2}^{⇒t 0}(1430)»ngle$, is smaller than the 〈f2(1270)〉/〈ρ0(770)〉 and $«ngle f_{2}^{⌕ime}(1525)»ngle$ ratios measured by DELPHI. The production rates and differential cross sections are compared with the predictions of JETSET 7.4 tuned to the DELPHI data and of HERWIG 5.8. The K*0(892) and ϕ(1020) data are compatible with model predictions, but a large disagreement is observed for the ${⤪ K}_{2}^{⇒t 0}(1430)$.

6 data tables match query

SIG in (1/SIG) is the total hadronic cross section. The statistical and systematic errors are combined quadratically.

SIG in (1/SIG) is the total hadronic cross section. The erros are statistical ones. The cross sections SIG(C=A), SIG(C=B), and SIG(C=C) obtained with A) both kaons identified, B) at least one kaon identified, and C) without requiring kaon identification.

SIG in (1/SIG) is the total hadronic cross section. The statistical and systematic erros are combined quadratically. For 0.05<X<0.2 the resulting cross s ection was taken by averaging the results with both identified kaons and with at least one identified kaon, for 0.2<X<1 the results obtained without particle id entification.

More…

Production characteristics of K0 and light meson resonances in hadronic decays of the Z0

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 65 (1995) 587-602, 1995.
Inspire Record 377487 DOI 10.17182/hepdata.48348

An analysis of inclusive production of K0 and the meson resonances K*±(892), ρ0(770),f0(975) andf2(1270) in hadronic decays of the Z0 is presented, based on about 973,000 multihadronic events collected by the DELPHI detector at LEP during 1991 and 1992. Overall multiplicities have been determined as 1.962±0.060 K0 mesons, 0.712±0.067 K*±(892) and 1.21±0.15ρ0(770) per hadronic Z0 decay. The average multiplicities off0(975) for scaled momentum,xp, in the range 0.05≤xp≤0.6 and off2(1270) for 0.05≤xp≤1.0 are 0.098±0.016 and 0.170±0.043 respectively. Thef0(975) and ρ0(770)xp-spectra have similar shapes. Thef2(1270)/ρ0(770) ratio increases withxp. The average multiplicities and the differential cross sections are compared with the JETSET Parton Shower model. The model with default parameters fails to reproduce the experimental K0 momentum spectrum at low momentum, describes the K*±(892) and ρ0(770)xp-spectrum shapes, but significantly overestimates their production rates.

13 data tables match query

Average multiplicity per hadronic event. Extrapolation to the full X range using the X-shape predicted by JETSET 7.4 PS model.

Average multiplicity per hadronic event. Extrapolation to the full X range using the X-shape predicted by JETSET 7.4 PS model.

Average multiplicity per hadronic event. Extrapolation to the full X range using the X-shape predicted by JETSET 7.4 PS model.

More…

Production of Lambda and Lambda anti-Lambda correlations in the hadronic decays of the Z0

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 318 (1993) 249-262, 1993.
Inspire Record 360638 DOI 10.17182/hepdata.48369

An analysis of the production of the Λ baryon in the hadronic decays of the Z 0 is presented, based on about 993K multihadronic events collected by the DELPHI detector at LEP during 1991 and 1992. The differencial cross section of the Λ and the correlations between Λ and Λ produced in the same event are compared to current models, based both on string fragmentation and on cluster decay. The predictions of the string fragmentation model are found to give satisfactory agreements with the data, clearly better than those of the cluster model.

6 data tables match query

No description provided.

Combined LAMBDA and LAMBDABAR multiplicity.

Errors contain systematic uncertainties.

More…

Determination of alpha-s from the scaling violation in the fragmentation functions in e+ e- annihilation

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 311 (1993) 408-424, 1993.
Inspire Record 355937 DOI 10.17182/hepdata.48411

A determination of the hadronic fragmentation functions of the Z 0 boson is presented from a study of the inclusive hadron production with the DELPHI detector at LEP. These fragmentation functions were compared with the ones at lower energies, thus covering data in a large kinematic range: 196 ⩽ Q 2 ⩽ 8312 GeV 2 and x (= P h E beam ) > 0.08 . A large scaling violation was observed, which was used to extract the strong coupling constant in second order QCD: α s ( M Z ) = 0.118 ± 0.005. The corresponding QCD scale for five quark flavours is: Λ (5) MS = 230 ± 60 MeV .

2 data tables match query

No description provided.

Extraction of strong coupling constant ALP_S and the LAMQCD)MSBAR values.


Measurement of inclusive production of light meson resonances in hadronic decays of the Z0

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 298 (1993) 236-246, 1993.
Inspire Record 342800 DOI 10.17182/hepdata.29001

A study of inclusive production of the meson resonances ρ 0 , K ∗0 (892), ƒ 0 (975) and ƒ 2 (1270) in hadronic decays of the Z 0 is presented. The measured mean meson multiplicity per hadronic event is 0.83 ± 0.14 for the ρ 0 0.64 ± 0.24 for the K ∗0 (892), 0.10 ± 0.04 for the ƒ 0 (975) in the momentum range p > 0.05 p beam ( x p > 0.05) and 0.11 ± 0.05 for the ƒ 2 (1270) for x p > 0.1 . These values and the corresponding differential cross sections ( 1 σ hadr ) d σ d x p for the vector mesons are in good agreement with the predictions of the JETSET 7.3 PS and HERWIG 5.4 models. The ƒ 2 (1270) production is overestimated by HERWIG but its x p -shape is correctly reproduced. The measured ratios of the production cross sections σ(ƒ 2 (1270)) σ(ρ 0 ) = 0.22 ± 0.08 and σ(ƒ 2 (1270)) σ(ƒ 0 (975)) = 3 −1 +7 for x p > 0.1 are consistent with the results obtained in hadronic reactions.

10 data tables match query

Average multiplicity per hadronic event. Extrapolation to x = 0 using the x shape predicted by JETSET 7.3 PS.

Average multiplicity per hadronic event. Extrapolation to x = 0 using the x shape predicted by JETSET 7.3 PS.

Average multiplicity per hadronic event. Extrapolation to x = 0 using the x shape predicted by JETSET 7.3 PS.

More…