Proton compton effect

Bernardini, G. ; Hanson, A.O. ; Odian, A.C. ; et al.
Nuovo Cim. 18 (1960) 1203-1236, 1960.
Inspire Record 1184998 DOI 10.17182/hepdata.37758

The elastic scattering of photons by protons has been measured for 100 MeV to 290 MeV photons at 90° c.m.s. and 139° c.m.s. scattering angles. The expected large increase in cross-section is observed at energies approaching that of (3/2, 3/2) pion-nucleon resonance. The scattering can be qualitatively explained by the ordinary Thomson amplitude combined with that of the (3/2, 3/2) resonance. A more detailed examination of the cross-section in the region just above the photo-meson threshold has shown that it is sensitive to the π0 photon coupling. From the experimental data, one may conclude that the π0 mean life should be between 10−16 and 10−18 s.

1 data table match query

No description provided.


Proton Compton Effect for 300-MeV Photons

Gray, E.R. ; Hanson, A.O. ;
Phys.Rev. 160 (1967) 1212-1215, 1967.
Inspire Record 944949 DOI 10.17182/hepdata.26568

The scattering of photons by protons has been measured with a spark-chamber technique using 335-MeV bremsstrahlung. The experimental values obtained at 90° and 135° are compared with those calculated by Contogouris using dispersion relations. The agreement is reasonable except for a persistently low point for 310 MeV at 90°.

3 data tables match query

No description provided.

No description provided.

No description provided.


Search for lepton-flavor violating decays of the Higgs boson in the $\mu\tau$ and e$\tau$ final states in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 104 (2021) 032013, 2021.
Inspire Record 1862497 DOI 10.17182/hepdata.104861

A search is presented for lepton-flavor violating decays of the Higgs boson to $\mu\tau$ and e$\tau$. The data set corresponds to an integrated luminosity of 137 fb$^{-1}$ collected at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV. No significant excess has been found, and the results are interpreted in terms of upper limits on lepton-flavor violating branching fractions of the Higgs boson. The observed (expected) upper limits on the branching fractions are, respectively, $\mathcal{B}($H $\to\mu\tau)$$\lt$ 0.15 (0.15)% and $\mathcal{B}($H$\to$e$\tau)$ $\lt$ 0.22 (0.16)% at 95% confidence level.

4 data tables match query

Observed (expected) 95% CL upper limits on $B(H\to\mu\tau)$ for each individual category and combined

Observed (expected) 95% CL upper limits on $B(H\to e\tau)$ for each individual category and combined

Summary of observed and expected upper limits at 95% CL, best fit branching fractions and corresponding constraints on Yukawa couplings for the $H\to\mu\tau$ and $H\to e\tau$ channels

More…

Search for light long-lived neutral particles produced in $pp$ collisions at $\sqrt{s} =$ 13 TeV and decaying into collimated leptons or light hadrons with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 80 (2020) 450, 2020.
Inspire Record 1752519 DOI 10.17182/hepdata.91132

Several models of physics beyond the Standard Model predict the existence of dark photons, light neutral particles decaying into collimated leptons or light hadrons. This paper presents a search for long-lived dark photons produced from the decay of a Higgs boson or a heavy scalar boson and decaying into displaced collimated Standard Model fermions. The search uses data corresponding to an integrated luminosity of 36.1 fb$^{-1}$ collected in proton-proton collisions at $\sqrt{s} =$ 13 TeV recorded in 2015-2016 with the ATLAS detector at the Large Hadron Collider. The observed number of events is consistent with the expected background, and limits on the production cross section times branching fraction as a function of the proper decay length of the dark photon are reported. A cross section times branching fraction above 4 pb is excluded for a Higgs boson decaying into two dark photons for dark-photon decay lengths between 1.5 mm and 307 mm.

19 data tables match query

Upper limits at 95% CL on the cross section times branching fraction for the process $H \to 2\gamma_d + X$ with $m_H$ = 125 GeV in the muon-muon final state.

Upper limits at 95% CL on the cross section times branching fraction for the process $H \to 4\gamma_d + X$ with $m_H$ = 125 GeV in the muon-muon final state.

Upper limits at 95% CL on the cross section times branching fraction for the process $H \to 2\gamma_d + X$ with $m_H$ = 800 GeV in the muon-muon final state.

More…

Search for decays of the 125 GeV Higgs boson into a Z boson and a $\rho$ or $\phi$ meson

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 11 (2020) 039, 2020.
Inspire Record 1806506 DOI 10.17182/hepdata.95908

Decays of the 125 GeV Higgs boson into a Z boson and a $\rho^0$(770) or $\phi$(1020) meson are searched for using proton-proton collision data collected by the CMS experiment at the LHC at $\sqrt{s} = $ 13 TeV. The analysed data set corresponds to an integrated luminosity of 137 fb$^{-1}$. Events are selected in which the Z boson decays into a pair of electrons or a pair of muons, and the $\rho$ and $\phi$ mesons decay into pairs of pions and kaons, respectively. No significant excess above the background model is observed. As different polarization states are possible for the decay products of the Z boson and $\rho$ or $\phi$ mesons, affecting the signal acceptance, scenarios in which the decays are longitudinally or transversely polarized are considered. Upper limits at the 95% confidence level on the Higgs boson branching fractions into Z$\rho$ and Z$\phi$ are determined to be 1.04-1.31% and 0.31-0.40%, respectively, where the ranges reflect the considered polarization scenarios; these values are 740-940 and 730-950 times larger than the respective standard model expectations. These results constitute the first experimental limits on the two decay channels.

2 data tables match query

Observed and expected 95% CL upper limits on B(H $\rightarrow$ Z$\rho$), for different polarizations.

Observed and expected 95% CL upper limits on B(H $\rightarrow$ Z$\phi$), for different polarizations.


A Limit on muon-neutrino (anti-muon-neutrino) ---> tau-neutrino (anti-tau-neutrino) oscillations from a precision measurement of neutrino - nucleon neutral current interactions

McFarland, Kevin Scott ; Naples, D. ; Arroyo, C.G. ; et al.
Phys.Rev.Lett. 75 (1995) 3993-3996, 1995.
Inspire Record 396286 DOI 10.17182/hepdata.42343

We present a limit on $\nu_\mu(\overline{\nu}_\mu)\to\nu_\tau(\overline{\nu}_\tau)$ oscillations based on a study of inclusive $\nu N$ interactions performed using the CCFR massive coarse grained detector in the FNAL Tevatron Quadrupole Triplet neutrino beam. The sensitivity to oscillations is from the difference in the longitudinal energy deposition pattern of $\nu_\mu N$ versus $\nu_\tau N$ charged current interactions. The $\nu_\mu$ energies ranged from $30$ to $500$GeV with a mean of $140$GeV. The minimum and maximum $\nu_\mu$ flight lengths are $0.9$km and $1.4$km respectively. The lowest $90\%$ confidence upper limit in $\sin~22\alpha$ of $2.7\times 10~{-3}$ is obtained at $\Delta m~2\sim50$eV$~2$. This result is the most stringent limit to date for $25<\Delta m~2<90$eV$~2$.

2 data tables match query

ALPHA is the neutrino mixing angle. The result for SIN(ALPHA)**2 from the fit at each Delta(M)**2 for NUMU -->NUTAU oscillations. The 90% CL upper limit is equal to the best fit SIN(ALPHA)**2 + 1.2*SIGMA.

ALPHA is the neutrino mixing angle. The result for SIN(ALPHA)**2 from the fit at each Delta(M)**2 for NUMU -->NUE oscillations. The 90% CL upper limit is equal to the best fit SIN(ALPHA)**2 + 1.2*SIGMA.


A high statistics search for nu/mu (anti-nu/mu) --> nu/e (anti-nu/e) oscillations in the small mixing angle regime.

The CCFR/NuTeV collaboration Romosan, A. ; Arroyo, C.G. ; de Barbaro, L. ; et al.
Phys.Rev.Lett. 78 (1997) 2912-2915, 1997.
Inspire Record 426120 DOI 10.17182/hepdata.41667

Limits on $\nu_\mu (\overline{\nu}_\mu) \to \nu_e (\overline{\nu}_e)$ oscillations based on a statistical separation of $\nu_e N$ charged current interactions in the CCFR detector at Fermilab are presented. $\nu_e$ interactions are identified by the difference in the longitudinal shower energy deposition pattern of $\nu_e N \rightarrow eX$ versus $\nu_\mu N \to \nu_\mu X$ interactions. Neutrino energies range from 30 to 600 GeV with a mean of 140 GeV, and $\nu_\mu$ flight lengths vary from 0.9 km to 1.4 km. The lowest 90% confidence upper limit in $sin^2 2\alpha$ of $1.1 \times 10^{-3}$ is obtained at $\Delta m^2 \sim 300 eV^2$. For $sin^2 2\alpha = 1$, $\Delta m^2 > 1.6 eV^2$ is excluded, and for $\Delta m^2 \gg 1000 eV^2$, $sin^2 2\alpha > 1.8 \times 10^{-3}$ is excluded. This result is the most stringent limit to date for $\Delta m^2 > 25 eV^2$ and it excludes the high $\Delta m^2$ oscillation region favoured by the LSND experiment. The $\nu_\mu$-to-$\nu_e$ cross-section ratio was measured as a test of $\nu_\mu (\bar\nu_\mu) \leftrightarrow \nu_e (\bar\nu_e)$ universality to be $1.026 \pm 0.055$.

2 data tables match query

ALPHA is the neutrino mixing angle. The result for SIN(ALPHA)**2 from the fit at each Delta(M)**2 for NUMU -->NUE oscillations. The 90% CL upper limit is equal to the best fit SIN(ALPHA)**2 + 1.2*SIGMA.

No description provided.


$\Lambda$(c)+ Production and Semileptonic Decay in 29-{GeV} $e^+ e^-$ Annihilation

Klein, S. ; Himel, T. ; Abrams, G.S. ; et al.
Phys.Rev.Lett. 62 (1989) 2444, 1989.
Inspire Record 277034 DOI 10.17182/hepdata.20042

We present results on Λc+ production in 29-GeV e+e− annihilation. The Λc+ are observed via their semileptonic decays to Λe+X and Λμ+X. With radiative corrections, we find σ(e+e−→Λc+X)〉BΛc+→eΛX)= 1.5±0.6±0.5 pb or 0.0038±0.0015±0.0012 Λc+→Λe+X decay per hadronic event, and σ(e+e−Λc+X)B(Λc+→μΛX)= 1.4±1.4±0.4 pb or 0.0035±0.0035±0.0011 Λc+→Λμ+X decay per hadronic event. These results can be used to place constraints on the predictions of various production models.

2 data tables match query

Cross sections * branching ratio for LAMBDA/C+ production in LAMBDA E+ decay channel.

Cross sections * branching ratio for LAMBDA/C+ production in LAMBDA MU+ decay channel.


Measurements of |V(cb)|, form factors and branching fractions in the decays anti-B0 --> D*+ l- anti-nu/l and anti-B0 --> D+ l- anti-nu/l.

The ALEPH collaboration Buskulic, D. ; De Bonis, I. ; Decamp, D. ; et al.
Phys.Lett.B 395 (1997) 373-387, 1997.
Inspire Record 425943 DOI 10.17182/hepdata.34082

Two samples of exclusive semileptonic decays, 579 B 0 → D ∗+ ℓ − ν ℓ events and 261 B 0 → D + ℓ − ν ℓ events, are selected from approximately 3.9 million hadronic Z decays collected by the ALEPH detector at LEP. From the reconstructed differential decay rate of each sample, the product of the hadronic form factor F (ω) at zero recoil of the D (∗)+ meson and the CKM matrix element | V cb | are measured to be F D ∗+ (1)|V cb | = (31.9 ± 1.8 stat ± 1.9 syst ) × 10 −3 , F D + (1)| V cb | = (27.8 ± 6.8 stat ± 6.5 syst ) × 10 −3 . The ratio of the form factors F D + (1) and F D ∗+ (1) is measured to be F D + (1) F D ∗+ (1) = 0.87 ± 0.22 stat ± 0.21 syst . A value of | V cb | is extracted from the two samples, using theoretical constraints on the slope and curvature of the hadronic form factors and their normalization at zero recoil, with the result | V cb | = (34.4 ± 1.6 stat ± 2.3 syst ± 1.4 th ) × 10 −3 . The branching fractions are measured from the two integrated spectra to be Br ( B 0 → D ∗+ ℓ − ν ℓ ) = (5.53 ± 0.26 stat ±0.52 syst ) %, Br ( B 0 → D ∗+ ℓ − ν ℓ ) = (2.35 ± 0.20 stat ± 0.44 syst ) %.

3 data tables match query

The formfactors are evaluated at zero recoil of D meson. Two different methods are used (see text for details). VCB is the KCM matrix element. The formfactor fitted to dependence: FF(OM) = FF(1)*(1-CONST*(OM-1)).

VCB is the KCM matrix element.

VCB is the KCM matrix element.


Initial Measurements of Z Boson Resonance Parameters in e+ e- Annihilation

Abrams, G.S. ; Adolphsen, Chris ; Aleksan, R. ; et al.
Phys.Rev.Lett. 63 (1989) 724, 1989.
Inspire Record 280007 DOI 10.17182/hepdata.20034

We have measured the mass of the Z boson to be 91.11±0.23 GeV/c2, and its width to be 1.61−0.43+0.60 GeV. If we constrain the visible width to its standard-model value, we find the partial width to invisible decay modes to be 0.62±0.23 GeV, corresponding to 3.8±1.4 neutrino species.

0 data tables match query