Investigation of the reaction pi- p ---> eta n at momenta up to 40-GeV/c

The Serpukhov-CERN collaboration Apel, W.D. ; Bertolucci, E. ; Bushnin, Yu.B. ; et al.
Sov.J.Nucl.Phys. 25 (1977) 194-197, 1977.
Inspire Record 118649 DOI 10.17182/hepdata.19079

None

1 data table match query

No description provided.


Reaction $\pi^- p \to \eta^\prime n$ in the 15-{GeV}/$c$ - 40-{GeV}/$c$ Momentum Range

The Serpukhov-CERN collaboration Apel, W.D. ; Augenstein, K.H. ; Bertolucci, E. ; et al.
Phys.Lett.B 83 (1979) 131, 1979.
Inspire Record 141023 DOI 10.17182/hepdata.49657

Measurements were made of the cross section of the reactions π − p → ν ′(958)n, η ′ → 2 γ at momenta at 15, 20, 25, 30 and 40 GeV/c. The experiment was carried out on the IHEP 70 GeV accelerator using the 648 channel hodoscope spectrometer NICE for γ-ray detection. A total of 6000 η′ mesons were recorded. A sharp drop is seen in the differential cross section for t → 0. The dependences of the differential cross sections for the π − p → η ′n and π − p → η n on t are identical. On the basis of the ratio of the cross sections for these reactions at t = 0, i.e. R( η′ n ) t=0 = 0.55 ± 0.06 , the singlet-octet mixing angle for pseudoscalar mesons was determined to be β = −(18.2 ± 1.4)°.

2 data tables match query

DATA AT 20, 25 AND 30 GEV/C SUMMED AND NORMALIZED TO THE CROSS SECTION AT 25 GEV/C.

DATA AT 20, 25 AND 30 GEV/C SUMMED AND NORMALIZED TO THE CROSS SECTION AT 25 GEV/C.


Reaction $\pi^- p \to \eta n$ in the 15-{GeV}/$c$ to 40-{GeV}/$c$ Momentum Range

The Serpukhov-CERN collaboration Apel, W.D. ; Augenstein, K.H. ; Bertolucci, E. ; et al.
Nucl.Phys.B 152 (1979) 1, 1979.
Inspire Record 133409 DOI 10.17182/hepdata.41487

A high-statistics measurement of the reaction π − p→ η n; η →2 γ has been performed at the 70 GeV Serpukhov accelerator for 15, 20, 25, 30 and 40 GeV/ c incident pion momentum using the NICE set-up with its associated 648-channel hodoscope spectrometer for γ-ray detection. It is found that the spin-flip and non-spin-flip amplitudes can be parametrized, for small | t |, as exponentials with the same slopes to within a few percent. For | t | ≳ 1 (GeV/ c ) 2 there is a break in the differential cross section. In addition, the A 2 effective trajectory deviates markedly for | t | ≳ 1 GeV/ c ) 2 from the linear behaviour valid for smaller | t |.

3 data tables match query

No description provided.

No description provided.

No description provided.


Study of $\pi^- p \to \eta^\prime \eta n$ in a Search for Glueballs

The Serpukhov-Brussels-Annecy(LAPP) collaboration Binon, F. ; Bricman, C. ; Donskov, S.V. ; et al.
Nuovo Cim.A 80 (1984) 363, 1984.
Inspire Record 199417 DOI 10.17182/hepdata.37465

η′η pair production in the charge exchange reaction π−p→η′ηn has been observed and studied in a search for glueballs with the 38 GeV/c pion beam of the 70 GeV IHEP accelerator. The γ-rays from the decay η′η→4γ were detected with the hodoscope spectrometer GAMS-2000. The η′η events in the mass range from threshold up to 1.8 GeV are decays of the scalar G(1590)-meson which has been already observed in its ηη decay mode. The measured ratio of the partial widths of the G→η′η and the G → ηη decay channels is 2.7±0.8 in agreement with the value expected for glueballs.

1 data table match query

No description provided.


Light isovector resonances in $\pi^- p \to \pi^-\pi^-\pi^+ p$ at 190 GeV/${\it c}$

The COMPASS collaboration Aghasyan, M. ; Alexeev, M.G. ; Alexeev, G.D. ; et al.
Phys.Rev.D 98 (2018) 092003, 2018.
Inspire Record 1655631 DOI 10.17182/hepdata.82958

We have performed the most comprehensive resonance-model fit of $\pi^-\pi^-\pi^+$ states using the results of our previously published partial-wave analysis (PWA) of a large data set of diffractive-dissociation events from the reaction $\pi^- + p \to \pi^-\pi^-\pi^+ + p_\text{recoil}$ with a 190 GeV/$c$ pion beam. The PWA results, which were obtained in 100 bins of three-pion mass, $0.5 < m_{3\pi} < 2.5$ GeV/$c^2$, and simultaneously in 11 bins of the reduced four-momentum transfer squared, $0.1 < t' < 1.0$ $($GeV$/c)^2$, are subjected to a resonance-model fit using Breit-Wigner amplitudes to simultaneously describe a subset of 14 selected waves using 11 isovector light-meson states with $J^{PC} = 0^{-+}$, $1^{++}$, $2^{++}$, $2^{-+}$, $4^{++}$, and spin-exotic $1^{-+}$ quantum numbers. The model contains the well-known resonances $\pi(1800)$, $a_1(1260)$, $a_2(1320)$, $\pi_2(1670)$, $\pi_2(1880)$, and $a_4(2040)$. In addition, it includes the disputed $\pi_1(1600)$, the excited states $a_1(1640)$, $a_2(1700)$, and $\pi_2(2005)$, as well as the resonancelike $a_1(1420)$. We measure the resonance parameters mass and width of these objects by combining the information from the PWA results obtained in the 11 $t'$ bins. We extract the relative branching fractions of the $\rho(770) \pi$ and $f_2(1270) \pi$ decays of $a_2(1320)$ and $a_4(2040)$, where the former one is measured for the first time. In a novel approach, we extract the $t'$ dependence of the intensity of the resonances and of their phases. The $t'$ dependence of the intensities of most resonances differs distinctly from the $t'$ dependence of the nonresonant components. For the first time, we determine the $t'$ dependence of the phases of the production amplitudes and confirm that the production mechanism of the Pomeron exchange is common to all resonances.

2 data tables match query

Real and imaginary parts of the normalized transition amplitudes $\mathcal{T}_a$ of the 14 selected partial waves in the 1100 $(m_{3\pi}, t')$ cells (see Eq. (12) in the paper). The wave index $a$ represents the quantum numbers that uniquely define the partial wave. The quantum numbers are given by the shorthand notation $J^{PC} M^\varepsilon [$isobar$] \pi L$. We use this notation to label the transition amplitudes in the column headers. The $m_{3\pi}$ values that are given in the first column correspond to the bin centers. Each of the 100 $m_{3\pi}$ bins is 20 MeV/$c^2$ wide. Since the 11 $t'$ bins are non-equidistant, the lower and upper bounds of each $t'$ bin are given in the column headers. The transition amplitudes define the spin-density matrix elements $\varrho_{ab}$ for waves $a$ and $b$ according to Eq. (18). The spin-density matrix enters the resonance-model fit via Eqs. (33) and (34). The transition amplitudes are normalized via Eqs. (9), (16), and (17) such that the partial-wave intensities $\varrho_{aa} = |\mathcal{T}_a|^2$ are given in units of acceptance-corrected number of events. The relative phase $\Delta\phi_{ab}$ between two waves $a$ and $b$ is given by $\arg(\varrho_{ab}) = \arg(\mathcal{T}_a) - \arg(\mathcal{T}_b)$. Note that only relative phases are well-defined. The phase of the $1^{++}0^+ \rho(770) \pi S$ wave was set to $0^\circ$ so that the corresponding transition amplitudes are real-valued. In the PWA model, some waves are excluded in the region of low $m_{3\pi}$ (see paper and [Phys. Rev. D 95, 032004 (2017)] for a detailed description of the PWA model). For these waves, the transition amplitudes are set to zero. The tables with the covariance matrices of the transition amplitudes for all 1100 $(m_{3\pi}, t')$ cells can be downloaded via the 'Additional Resources' for this table.

Decay phase-space volume $I_{aa}$ for the 14 selected partial waves as a function of $m_{3\pi}$, normalized such that $I_{aa}(m_{3\pi} = 2.5~\text{GeV}/c^2) = 1$. The wave index $a$ represents the quantum numbers that uniquely define the partial wave. The quantum numbers are given by the shorthand notation $J^{PC} M^\varepsilon [$isobar$] \pi L$. We use this notation to label the decay phase-space volume in the column headers. The labels are identical to the ones used in the column headers of the table of the transition amplitudes. $I_{aa}$ is calculated using Monte Carlo integration techniques for fixed $m_{3\pi}$ values, which are given in the first column, in the range from 0.5 to 2.5 GeV/$c^2$ in steps of 10 MeV/$c^2$. The statistical uncertainties given for $I_{aa}$ are due to the finite number of Monte Carlo events. $I_{aa}(m_{3\pi})$ is defined in Eq. (6) in the paper and appears in the resonance model in Eqs. (19) and (20).


Analysis of the Reaction $\pi^- P \to \pi^0 \eta N$ at 40-{GeV}/c Beam Momentum

Apel, W.D. ; Augenstein, K.H. ; Bertolucci, E. ; et al.
Nucl.Phys.B 193 (1981) 269-286, 1981.
Inspire Record 173075 DOI 10.17182/hepdata.34254

The reaction π − p→ π 0 ηn ↳2y ↳2y has been analyzed using data of an experimental performed at the 70 GeV accelerator, with the NICE 648 channel hodoscope spectrometer for γ ray detection. Events with 4 γ seen are used for the analysis. A method is applied, which allows the determination of the number of π 0 η events for each mass, cos θ GJ and t bin. Mass spectra, t distributions and decay angular distributions for the π 0 η system are presented. The cross section for the production of A 2 0 is found to be 2.7 ± 1.1 μ b at 40 GeV/ c beam momentum. No indication of a resonant 1 − state in the π 0 η system is observed, in spite of the fact that this state is allowed for the π 0 η system on the same footing as the observed 0 + and 2 + resonances.

1 data table match query

ERROR INCLUDES UNCERTAINTIES IN SEVERAL CORRECTIONS AND IN BACKGROUND SUBTRACTION.


MEASUREMENT OF PI- P ---> PI0 PI0 N AT 25-GEV/C

Apel, W.D. ; Augenstein, K.H. ; Bertolucci, E. ; et al.
Nucl.Phys.B 201 (1982) 197-204, 1982.
Inspire Record 181089 DOI 10.17182/hepdata.17634

The reaction π − p→ π 0 π 0 n has been measured with a 648 channel hodoscope spectrometer for the detection of the four γ's from the π 0 decays. The π 0 π 0 D-wave is fully compatible with the f 0 contribution as it is determined in high-statistics π + π − experiments. The magnitude of the π 0 π 0 S-wave and the cosinus of its phase angle (relative to the known D-wave) are determined from fits to the π 0 π 0 angular distributions. Argand diagrams for the I = 0 amplitude S 0 are given for the range 1000 to 1500 MeV/ c 2 . Two solutions exist. One exceeds the unitarity limit above 1200 MeV/ c 2 . The other remains within the unitarity limit and is nearly elastic up to 1450 MeV/ c 2 . It indicates an S 0 wave resonance around 1300 MeV/ c 2 .

2 data tables match query

No description provided.

No description provided.


SMALL /t/ pi- p CHARGE EXCHANGE SCATTERING AT 40-GeV/c

The Serpukhov-Brussels-Annecy(LAPP) collaboration Binon, F.G. ; Davydov, V.A. ; Donskov, S.V. ; et al.
Z.Phys.C 9 (1981) 109, 1981.
Inspire Record 164809 DOI 10.17182/hepdata.13526

π−p→π0n differential cross-sections have been measured in the region of small 4-momentum transfer at 40 GeV/c incident momentum. The experiment performed at the IHEP 70 GeV accelerator makes use of a hodoscope γ-spectrometer. Thet- dependence of the cross-section points to a dominance of the spin-flip amplitude.

1 data table match query

No description provided.


Observation of a Spin 4 Neutral Meson with 2-GeV Mass Decaying in pi0 pi0

The Serpukhov-CERN collaboration Apel, W.D. ; Augenstein, K. ; Bertolucci, E. ; et al.
Phys.Lett.B 57 (1975) 398, 1975.
Inspire Record 99595 DOI 10.17182/hepdata.27849

The invariant mass spectrum of neutral meson states from π − p interactions at 40 GeV/ c incident momentum has been investigated in a high statistics experiment performed at the 70 GeV IHEP accelerator. To detect the high energy photons coming from the produced neutral states, a hodoscope spectrometer with a computer on-line was used. A clear structure on the mass spectrum of dipions produced in the reaction π − p→π°π°n is observed at 2 GeV. The decay angular distributions show in this mass region the variation with mass typical of a state with a spin J = 4. The mass of the observed meson is found to be M = (2020±30)MeV and the estimate of the full width is (180±60) MeV.

1 data table match query

No description provided.


Observation of A Meson x --> 2 gamma, with Mass 2.85-GeV/c**2, Produced in the Charge Exchange Reaction pi- p --> x n at 40-GeV/c

Apel, W.D. ; Augenstein, K.H. ; Bertolucci, E. ; et al.
Phys.Lett.B 72 (1978) 500-502, 1978.
Inspire Record 122151 DOI 10.17182/hepdata.27481

The invariant mass spectrum of neutral final states produced in π − p charge-exchange scattering at 40 GeV/ c has been studied, searching for heavy particles decaying in 2γ. A peak is observed around 2.85 GeV/ c 2 . The cross section of the reaction π − p→X(2.85)+n, times the branching ratio of the X→2 γ decay, is measured to be σ × BR ⋍ 2 × 10 −34 cm 2 .

1 data table match query

MEAN VALUE OF -T = 0.28 +- 0.04 GEV**2.